早教吧作业答案频道 -->数学-->
1、已知函数f(x)=x^2+bx+c对任意α、β∈R都有f(sinα)≥0且f(2+cosβ)≤0.(1)求f(1)的值.(2)求证:C≥3.(3)若f(sinα)的最大值为10,求f(x)的表达式.2、设二次函数f(x)=x^2+bx+c(a>0),方程f(x)-x=0的两根X,Y满
题目详情
1、已知函数f(x)=x^2+bx+c对任意α 、β∈R都有f(sinα)≥0且f(2+cosβ)≤0.
(1)求f(1)的值.
(2)求证:C≥3.
(3)若f(sinα)的最大值为10,求f(x)的表达式.
2、设二次函数f(x)=x^2+bx+c(a>0),方程f(x)-x=0的两根X,Y满足0<X<Y<1/a.
(1)当M∈(0,X)时,证明:M<f(x)<X.
(2)设函数f(x)的图像关于x=n对称,证明;n<X/2(M、n均为时数)
注意大小X,x
(1)求f(1)的值.
(2)求证:C≥3.
(3)若f(sinα)的最大值为10,求f(x)的表达式.
2、设二次函数f(x)=x^2+bx+c(a>0),方程f(x)-x=0的两根X,Y满足0<X<Y<1/a.
(1)当M∈(0,X)时,证明:M<f(x)<X.
(2)设函数f(x)的图像关于x=n对称,证明;n<X/2(M、n均为时数)
注意大小X,x
▼优质解答
答案和解析
1.
f(x)=x^2+bx+c
对任意α、β∈R有:
f(sinα)≥0
f(2+cosβ)≤0
α=90,f(1)>=0
β=180,f(1)
f(x)=x^2+bx+c
对任意α、β∈R有:
f(sinα)≥0
f(2+cosβ)≤0
α=90,f(1)>=0
β=180,f(1)
看了 1、已知函数f(x)=x^2...的网友还看了以下:
高中必修1函数题定义在R上的函数y=f(x),f(x)≠0.当x>0时,f(x)>1.且对于任意的 2020-06-02 …
设a>1,证明当a>0时,不等式(1+x)a(上标)>1+ax成立. 2020-06-06 …
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1 2020-06-08 …
f(x)是[a,b]上的连续函数,g(x)是[a,b]上的可积函数(1)证明:如果g(x)>=0或 2020-06-11 …
设A=[a1a2…an]≠0(n>1).证明:(ATA)X=O有非零解.1.证明:r[A^tA]= 2020-06-14 …
当x>1,证明2√x>3-1/x 2020-06-14 …
定义在r上的函数fxf(0)不等于0定义在R上的函数y=fx;f0不等于0;当x>0时,fx>1, 2020-08-01 …
已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3-4x+1;( 2020-11-01 …
0<a<b,n>1.证明na^(n-1)(b-a)<b^n-a^n<nb^(n-1)(b-a)用中值 2020-11-01 …
关于高数设f(x)与g(x)都是定义域在X上的有界函数(1)证明f(x)+g(x)都是X上的有界函数 2020-11-10 …