早教吧作业答案频道 -->数学-->
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
题目详情
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
▼优质解答
答案和解析
(1)证明:∵AD为直径,AD⊥BC,
∴由垂径定理得:
=
∴根据圆心角、弧、弦之间的关系得:BD=CD.
(2) B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:
=
,
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)
∴由垂径定理得:
BD |
CD |
∴根据圆心角、弧、弦之间的关系得:BD=CD.
(2) B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:
BD |
CD |
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)
看了 如图,AD为△ABC外接圆的...的网友还看了以下:
两条互相平行的直线分别过点A(6,2)和B(-3,-1)并且绕着A,B旋转 如果这两条直线间距离为 2020-05-13 …
求证:四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))其 2020-06-23 …
已知直线l经过点P(2,3)且被两条平行直线3x+4y-7=0和3x+4y+8=0截得的线段长为d 2020-06-27 …
已知a1=6,d=3,求a8已知a4=10,a10=4,求a7及d已知a2=12,an=-20,d 2020-07-09 …
1.已知数列{an}为等差数列(1)a1=1,d=4,求a20;(2)a1=6,a8=27,求d; 2020-07-09 …
设变换为u=x-2y、v=x+ay,可把方程d²z/dx²+d²z/(dxdy)-d²z/dy²= 2020-07-09 …
已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交 2020-07-20 …
E为三角形ABC中AB边的中点,D为三角形ABC外一点,E为三角形ABC中AB边的重点,D为三角形 2020-07-22 …
在△ABC中,AB=AC=5,点D是边BC的中点.现在以D为圆心,以DC为半径做⊙D,求在△ABC 2020-07-22 …
如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D作BC的垂线,垂足为点F 2020-07-31 …