早教吧作业答案频道 -->数学-->
1/3(x^3)-a^2x满足,对任意x1,x2∈[0,1]|f(x1)-f(x2)|≤1恒成立则a的取值范围
题目详情
1/3(x^3)-a^2x满足,对任意x1,x2∈[0,1]|f(x1)-f(x2)|≤1恒成立则a的取值范围
▼优质解答
答案和解析
f'(x) = x^2 - a^2
若a1时,则[0,1]
上,f'(x)>0,为f(x)增区间 单
调区间
|f(x1)-f(x2)| ≤ |f(1) - f(0)
| = |1/3 - a^2| ≤ 1
解得 -2/√3 ≤ a ≤ 0 或 1 ≤ a
≤ 2/√3
若0≤a≤1,令f'(x) = x^2 -
a^2 = 0 得 x=a时,有最值
x 0 ,则x=a为最小值,此
时
|f(x1)-f(x2)|≤1,等价于
|f(0) - f(a)| ≤ 1,且 |f(1) -
f(a)| ≤ 1
即
|-1/3*a^3 + a^3| ≤ 1,且
|1/3 - a^2 - 1/3*a^3 +
a^3| ≤ 1
对于|-1/3*a^3 + a^3| ≤ 1,
0≤a≤1恒满足.
对于|1/3 - a^2 - 1/3*a^3 +
a^3| ≤ 1
整理得 |( 2a + 1 )( a - 1 )
^2| ≤ 3,0≤a≤1恒满足.
综上,a∈[-2/√3 ,2/√3] 化
简即[-2√3/3,2√3/3]
若a1时,则[0,1]
上,f'(x)>0,为f(x)增区间 单
调区间
|f(x1)-f(x2)| ≤ |f(1) - f(0)
| = |1/3 - a^2| ≤ 1
解得 -2/√3 ≤ a ≤ 0 或 1 ≤ a
≤ 2/√3
若0≤a≤1,令f'(x) = x^2 -
a^2 = 0 得 x=a时,有最值
x 0 ,则x=a为最小值,此
时
|f(x1)-f(x2)|≤1,等价于
|f(0) - f(a)| ≤ 1,且 |f(1) -
f(a)| ≤ 1
即
|-1/3*a^3 + a^3| ≤ 1,且
|1/3 - a^2 - 1/3*a^3 +
a^3| ≤ 1
对于|-1/3*a^3 + a^3| ≤ 1,
0≤a≤1恒满足.
对于|1/3 - a^2 - 1/3*a^3 +
a^3| ≤ 1
整理得 |( 2a + 1 )( a - 1 )
^2| ≤ 3,0≤a≤1恒满足.
综上,a∈[-2/√3 ,2/√3] 化
简即[-2√3/3,2√3/3]
看了 1/3(x^3)-a^2x满...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …