早教吧作业答案频道 -->数学-->
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a处间断B.f[φ(x)]在x=a处间断C.[φ(x)]2在x=a处间断D.φ(x)f(x)在x=a处间断
题目详情
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则( )A. φ[f(x)]在x=a处间断
B. f[φ(x)]在x=a处间断
C. [φ(x)]2在x=a处间断
D.
在x=a处间断
B. f[φ(x)]在x=a处间断
C. [φ(x)]2在x=a处间断
D.
φ(x) |
f(x) |
▼优质解答
答案和解析
选项D正确,可以用反证法进行证明:
假设
在x=a处不间断,即
在x=a处连续,
则
存在,且
=
.
从而,
φ(x)=
f(x)=
f(a)=φ(a),
故φ(x)在x=a处连续,与已知条件矛盾,
故
在x=a处间断.
选项A、B、C均不正确.
A的反例:取f(x)=1,φ(x)=sgnx 在x=0处间断,但φ[f(x)]=1 在x=0处连续.
B的反例:取f(x)=1,φ(x)=sgnx 在x=0处间断,但f[φ(x)]=1 在x=0处连续.
C的反例:取φ(x)=
在x=0处间断,但[φ(x)]2=1在x=0处连续.
综上,正确选项为:D.
故选:D.
假设
φ(x) |
f(x) |
φ(x) |
f(x) |
则
lim |
x→a |
φ(x) |
f(x) |
lim |
x→a |
φ(x) |
f(x) |
φ(a) |
f(a) |
从而,
lim |
x→a |
lim |
x→a |
φ(x) |
f(x) |
lim |
x→a |
φ(a) |
f(a) |
故φ(x)在x=a处连续,与已知条件矛盾,
故
φ(x) |
f(x) |
选项A、B、C均不正确.
A的反例:取f(x)=1,φ(x)=sgnx 在x=0处间断,但φ[f(x)]=1 在x=0处连续.
B的反例:取f(x)=1,φ(x)=sgnx 在x=0处间断,但f[φ(x)]=1 在x=0处连续.
C的反例:取φ(x)=
|
综上,正确选项为:D.
故选:D.
看了 设f(x)在x=a处连续,φ...的网友还看了以下:
3.下列说法正确的是()①若f(X)在X=Xo连续,则f(X)在X=Xo可导②若f(X)在X=Xo 2020-05-13 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
设函数f(x)在x=0处连续.下列结论不正确的是()A.若limx→0f(x)+f(-x)x存在, 2020-06-12 …
极限存在如果limf(x)存在,但limg(x)不存在,那么lim[f(x)+g(x)]存不存在? 2020-06-12 …
如果limf(x)存在,但limg(x)不存在,那么limf(x)*g(x)为什么存在?x→x.x 2020-06-12 …
设f(x)在x=Xo处连续,g(x)在x=Xo处不连续,f(x)+g(x)在x=Xo处连续,试证之 2020-07-10 …
.设f(x)在x.处可导,则lim△x→0△x分之f(x.-△x)-f(x.)等于?2.曲线y=3 2020-07-16 …
一道求导的概念题目!设g(x)在x=x0的某领域内有定义,f(x)=|x-x0|g(x),则f(x) 2020-11-01 …
为什么[f(x)+f(-x)]/x在x趋于0时极限存在就能推出f(x)在x趋于0时的极限为0?前提是 2020-12-27 …