早教吧作业答案频道 -->数学-->
数列极限问题现在知道Sn=[(n+3)`n]/2①求解1/S1+1/S2+```1/Sn的极限答案是11/9②为什么1/Sn
题目详情
数列极限问题
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
▼优质解答
答案和解析
Sn=[(n+3)n]/2
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
看了 数列极限问题现在知道Sn=[...的网友还看了以下:
高等数学中x的n次方求和怎么算(n从1到正无穷,不是1到n)答案是1/(1-x),我想要过程还有x 2020-05-14 …
一道奇怪的极限题lim1/n[(1-1/n)^2+(1-2/n)^2+...+(1-(n-1)/n 2020-05-14 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
两个高中数学问题,谢谢解答!1.若limn-∞(2n^2+1/n+1-na+b)=2,则ab的值为 2020-05-23 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
若,│m-2│+(n/3-1)²=0,问单项式3x²y(m+n-1)和x(2m-n+1)y(4)是 2020-07-31 …
已知(1+1/x)^x=e,e^x-1=x,limx→1(x+x^2+...+x^n-n)/(x-1 2020-10-31 …
简单数学题急1+(1+2)+(1+2+3)+(1+2+3+4)+……+(1+2+3+4+……+n)和 2020-11-18 …
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().A. 2020-11-18 …
已知直线y=[-(n+1)/(n+2)]x+[1/(n+2)](n为正整数)与两坐标轴围成的三角形面 2021-02-03 …