早教吧作业答案频道 -->数学-->
数列极限问题现在知道Sn=[(n+3)`n]/2①求解1/S1+1/S2+```1/Sn的极限答案是11/9②为什么1/Sn
题目详情
数列极限问题
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
▼优质解答
答案和解析
Sn=[(n+3)n]/2
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
看了 数列极限问题现在知道Sn=[...的网友还看了以下:
求[4-2^(n+1)]/[2^n+2^(n+2)]的极限就是lim[4-2^(n+1)]/[2^n 2020-03-31 …
S=0^2×1/N+(1/N)^2×1/N+(2/N)^2×1/N+…+(N—1/N)^2×1/N 2020-05-13 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
紧急!设数列bn满足b1=1,bn>0(n=2,3.)其前n项乘积Tn=(a^(n-1)bn)^n 2020-07-18 …
1.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn} 2020-08-01 …
我们用a表示不大于a的最大整数,例如[1·5]=1,[-2.5]-3解决以下问题。l,[丌]=?[- 2020-10-31 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
已知数列{an}中:(1)a1=2,an=2a(n-1)+2^n+1(n>=2,n∈N*)求an;( 2020-12-09 …
求数列的时候,什么时候讨论n≥2.比如下列题目已知数列{an}中,Sn是它的前n项和,且Sn+1=4 2020-12-23 …