早教吧作业答案频道 -->数学-->
求lim[x^(n+1)-(n+1)x+n]/(x-1)^2x-->1=lim(t->0)[[1+(n+1)t+(n+1)n/2t^2+o(t^2)]-(n+1)-(n+1)t+n]/t^2?不懂
题目详情
求lim[ x^(n+1)-(n+1)x+n]/(x-1)^2 x-->1
=lim(t->0) [ [ 1 + (n+1)t + (n+1)n/2t^2 + o(t^2)] -(n+1)-(n+1)t + n]/t^2?不懂
=lim(t->0) [ [ 1 + (n+1)t + (n+1)n/2t^2 + o(t^2)] -(n+1)-(n+1)t + n]/t^2?不懂
▼优质解答
答案和解析
①令:x = 1+t (t->0)
lim(x->1) [ x^(n+1)-(n+1)x+n]/(x-1)^2
=lim(t->0) [ (1+t)^(n+1)-(n+1)(1+t) + n]/t^2
【二项式展开, o(t^2) 表示t^2的高阶无穷小量:(n+1)n(n-1)t^3/3! + ... + t^(n+1) 】
=lim(t->0) [ [ 1 + (n+1)t + (n+1)n/2t^2 + o(t^2)] -(n+1)-(n+1)t + n]/t^2
=(n+1)n/2
② 罗必塔法则:
lim(x->1) [ x^(n+1)-(n+1)x+n]/(x-1)^2
=lim(x->1) [(n+1)x^n -(n+1)]/2(x-1)
=lim(x->1) (n+1)nx^(n-1)/2
=n(n+1)/2
lim(x->1) [ x^(n+1)-(n+1)x+n]/(x-1)^2
=lim(t->0) [ (1+t)^(n+1)-(n+1)(1+t) + n]/t^2
【二项式展开, o(t^2) 表示t^2的高阶无穷小量:(n+1)n(n-1)t^3/3! + ... + t^(n+1) 】
=lim(t->0) [ [ 1 + (n+1)t + (n+1)n/2t^2 + o(t^2)] -(n+1)-(n+1)t + n]/t^2
=(n+1)n/2
② 罗必塔法则:
lim(x->1) [ x^(n+1)-(n+1)x+n]/(x-1)^2
=lim(x->1) [(n+1)x^n -(n+1)]/2(x-1)
=lim(x->1) (n+1)nx^(n-1)/2
=n(n+1)/2
看了 求lim[x^(n+1)-(...的网友还看了以下:
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
已知:有一个数列T,T[n]=1+(j=0到n-1)累计加T[j];且T[0]=1.求证:T[n] 2020-05-14 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
已知向量p=(an,n),向量q=(a(n+1),n+1),(n∈N*),若a1=3,向量p‖向量 2020-07-12 …
紧急!设数列bn满足b1=1,bn>0(n=2,3.)其前n项乘积Tn=(a^(n-1)bn)^n 2020-07-18 …
数列求通项的问题数列a1=1a(n+1)=2Sn+1(打括号的n-1是下标)求{an}用S(n+1 2020-07-29 …
时间复杂度对数阶是什么样的T(n)=T(n-1)+1/n=T(n-2)+1/(n-1)+1/n=T 2020-07-30 …
对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,<1+1,不等 2020-08-03 …
证明组合性质:C(n+1,m)=C(n,m)+C(n,m-1)C(n+1,m)=(n+1)!/m!( 2020-11-01 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …