早教吧作业答案频道 -->数学-->
海伦定理求面积能用在四边形上吗?
题目详情
海伦定理求面积能用在四边形上吗?
▼优质解答
答案和解析
证明(1) 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明.设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2) 我国宋代的数学家秦九韶也提出了“三斜求积术”.它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事.所以他们想到了三角形的三条边.如果这样做求三角形的面积也就方便多了.但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”.秦九韶他把三角形的三条边分别称为小斜、中斜和大斜.“术”即方法.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个.相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”.以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 当P=1时,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 因式分解得 △ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2] =1/16[(c+a) ^2-b ^2][b^ 2-(c-a)^ 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/16 [2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得:S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c) 这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”.S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} .其中cba.根据海伦公式,我们可以将其继续推广至四边形的面积运算.如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积 这里用海伦公式的推广 S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边) 代入解得s=8√ 3 证明(3) 在△ABC中∠A、∠B、∠C对应边a、b、c O为其内切圆圆心,r为其内切圆半径,p为其半周长 有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1 r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r ∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2 ∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2) =[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2 =ptanA/2tanB/2tanC/2 =r ∴p^2r^2tanA/2tanB/2tanC/2=pr^3 ∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2) =p(p-a)(p-b)(p-c) ∴S=√p(p-a)(p-b)(p-c) 证明(4) 通过正弦定理:和余弦定理的结合证明 (具体可以参考证明方法1)
看了 海伦定理求面积能用在四边形上...的网友还看了以下:
三角形定理三角形的重心是什么的交点?内心是什么的交点?外心是什么的交点? 2020-05-16 …
如图三角形ABC中,AD是角平分线,角C等于二分之一角BAC,AC等于2AB,求证,角B等于90度 2020-05-16 …
随着时间的增加,黑洞的面积如何变化?霍金证明了黑洞的面积定理,在经典物理的框架里,黑洞面积越变越大 2020-06-09 …
一道概率题目.纠结,求教这有两个定理1.当X1,X2,.,Xn独立同分布时D(X1+X2+X3+. 2020-06-17 …
关于0不是自然数的佐证谁能推倒下面的定理:皮亚诺定理:1.1是自然数;2.每个自然数都有一个后继数 2020-06-25 …
斜向切割磁感线右手定则就是说,切割角度不为90°时,用右手定则应该怎么判断?难道把手劈过去?但是那 2020-06-28 …
海莱定理下面的定理怎么证明:在平面内有若干个(可以是无穷个)凸集,其中任意三个有一个公共点,则这所 2020-07-29 …
谁来能记得起来朗格拉日的夹逼定理?稍微回忆一下,你还能记得起这个《高等数学》里面的定理吗? 2020-07-29 …
全等三角形定理证明注:是要证明SSS、SAS、ASA这三个定理,不是用它们去证明三角形全等 2020-08-01 …
求全等三角形定理的证明过程用几何的四大原理证明,不是循环推理。。。 2020-08-01 …
相关搜索:海伦定理求面积能用在四边形上吗