早教吧作业答案频道 -->其他-->
反比例函数y=kx(k>1)和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于C,交y=1x的图象于A,PD⊥y轴于D,交y=1x的图象于B,当点P在反比例函数y=kx上运动时,以下结论①S△ODB=
题目详情
反比例函数y=
(k>1)和y=
在第一象限内的图象如图所示,点P在y=
的图象上,PC⊥x轴于C,交y=
的图象于A,PD⊥y轴于D,交y=
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
(k>1)和y=
在第一象限内的图象如图所示,点P在y=
的图象上,PC⊥x轴于C,交y=
的图象于A,PD⊥y轴于D,交y=
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
k k x x
在第一象限内的图象如图所示,点P在y=
的图象上,PC⊥x轴于C,交y=
的图象于A,PD⊥y轴于D,交y=
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
1 1 x x
的图象上,PC⊥x轴于C,交y=
的图象于A,PD⊥y轴于D,交y=
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
k k x x
的图象于A,PD⊥y轴于D,交y=
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
1 1 x x
的图象于B,当点P在反比例函数y=
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
1 1 x x
上运动时,以下结论①S△ODB=
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
k k x x △ODB
;②四边形PAOB的面积始终不变;③PA=PB;④
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
1 1 2 2
=
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
PD PD PB PB
;其中一定正确的是( )
A.①②③
B.①③④
C.①②④
D.①②
PC PC PA PA
k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
PC |
PA |
▼优质解答
答案和解析
设P(m,n),则mn=k,
∵A、B两点在双曲线y=
上,
∴A(m,
),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1x x x上,
∴A(m,
),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1m m m),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n,n),
∴①S△ODB△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2,结论正确;
②S四边形PAOB四边形PAOB=S矩形OCPD矩形OCPD-S△OBD△OBD-S△OAC△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1m m m=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
k−1 k−1 k−1m m m,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
k−1 k−1 k−1n n n,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
PD PD PDPB PB PB=
=
,
=
=
,
=
,结论正确.
故选C.
m m mm−
m−
m−
1 1 1n n n=
,
=
=
,
=
,结论正确.
故选C.
k k kk−1 k−1 k−1,
=
=
,
=
,结论正确.
故选C.
PC PC PCPA PA PA=
=
,
=
,结论正确.
故选C.
n n nn−
n−
n−
1 1 1m m m=
,
=
,结论正确.
故选C.
k k kk−1 k−1 k−1,
=
,结论正确.
故选C.
PD PD PDPB PB PB=
,结论正确.
故选C.
PC PC PCPA PA PA,结论正确.
故选C.
∵A、B两点在双曲线y=
1 |
x |
∴A(m,
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
x |
∴A(m,
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
∴①S△ODB△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
②S四边形PAOB四边形PAOB=S矩形OCPD矩形OCPD-S△OBD△OBD-S△OAC△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
m | ||
m−
|
1 |
n |
1 |
n |
1 |
n |
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
n | ||
n−
|
1 |
m |
1 |
m |
1 |
m |
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PD |
PB |
PC |
PA |
故选C.
PC |
PA |
故选C.
看了 反比例函数y=kx(k>1)...的网友还看了以下:
点A是函数y=2/x(x>0)图像上任意一点(一象限),过A点分别作x、y的平行线交函数y=1/x 2020-04-05 …
实数x,y满足不等式组{y大于等于0,x-y大于等于0,2x-y-2大于等于0.}.则W=y-1/ 2020-05-13 …
实数x,y满足不等式组{y大于等于0,x-y大于等于0,2x-y-2大于等于0.}.则W=y-1/ 2020-05-13 …
圆和直线联立的问题.圆:X²+Y²=1动点P(X,Y)在圆上运动,求(Y+1)/(X+2)的最大值 2020-06-06 …
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线设 2020-06-14 …
关于初三反比例函数:两个反比例函数y=k\x和y=1\x在第一象限的图像如图所示接上点P在y=k\ 2020-06-27 …
求拐点的个数.曲线y=(x-1)^2(x-3)^2的拐点的个数为2个.书上给出的解释因本题的曲线是 2020-06-30 …
1、根据导数定义求:f(x)=cosx,求f’(x).2、求指定点的切线方程和法线方程:(1)、y 2020-07-31 …
若点集A={(x,y)|x^2+y^2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},(1) 2020-10-31 …
已知函数f(x)=-x^2+x的图像上的一点A(-1,-2)及邻近点B(-1+△x,-2+△y),求 2020-11-01 …