早教吧 育儿知识 作业答案 考试题库 百科 知识分享

当x趋近2时,{[根号(6-x)]-2}/{[根号(3-x)]-1}的极限是多少?求大虾给解释//

题目详情
当x趋近2时,{[根号(6-x)]-2}/{[根号(3-x)]-1}的极限是多少?求大虾给解释//
▼优质解答
答案和解析
{[根号(6-x)]-2}/{[根号(3-x)]-1} = {[根号(6-x)]-2} {[根号(6-x)]+2}{[根号(3-x)]+1} /{{[根号(3-x)]-1} {[根号(6-x)]+2}{[根号(3-x)]+1}}= {[(6-x)]-4} {[根号(3-x)]+1} /{[(3-x)-1] {[根号(6-x)]+2}}
={[(2-x} {[根号(3-x)]+1} /{[(2-x] {[根号(6-x)]+2}}
={[根号(3-x)]+1} / {[根号(6-x)]+2} ,x 不能等於2
lim x-> 2 {[根号(6-x)]-2}/{[根号(3-x)]-1} = lim x-> 2 {[根号(3-x)]+1} / {[根号(6-x)]+2} =1/2