已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为()A.6B.62C.3D.2
2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2x2 |
x2 | x2x22a2 |
a2 | a2a22y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 22=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2
B.
C.
D. 2 | 6 |
| 6 |
C.
D. 2 |
| | 6 |
| 6 | 2 |
2 |
D. 2 | 3 |
| 3 |
答案和解析
依题意知抛物线的准线x=-1.代入双曲线方程得
y=±
.
不妨设A(-1,),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a.
不妨设A(-1,
),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a),
∵△FAB是等腰直角三角形,
∴
=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a=2,解得:a=
,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 5 |
| 5 | 5
5 |
5 | 5,
∴c
22=a
22+b
22=
+1=,
∴e=
则双曲线的离心率为:.
故选A. 1 |
1 | 1
5 |
5 | 5+1=
,
∴e=
则双曲线的离心率为:.
故选A. 6 |
6 | 6
5 |
5 | 5,
∴e=
则双曲线的离心率为:.
故选A. | 6 |
| 6 | 6
则双曲线的离心率为:
.
故选A. | 6 |
| 6 | 6.
故选A.
我们把离心率为e=(√5+1)/2的双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)成为我 2020-03-30 …
设函数f(x)=x^2-alnx与g(x)=(1/a)x-√x的图像分别交直线x=1于点A、B,且 2020-05-15 …
使用积分求曲线围成的面积计算y=2*x-x^2与x+y=2围成的体积,为什么我算出来是负数啊?2条 2020-06-02 …
填空:分式的约分和通分约分:-16b^2y^2/20ay^3=-1-x/x^2+2x+1=a^y- 2020-06-06 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
已知函数f(x)=x^2*f'(2)+5x,则f'(2)=?f(x)=x^2·f'(2)+5xf' 2020-06-20 …
若分式方程3/x-2=a/x=4/x(x-2)有增根,则增根可能为?我知道答案是3/(x-2)=a 2020-07-30 …
1.x+y+z≠0且x/(y+z)=y/(x+y)=z/x+y,求x/(x+y+z)2.x+y+z= 2020-10-31 …
1、已知x+y+z=0求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+62、x- 2020-10-31 …
一道高二文科函数题~f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x定义域为R,已知f( 2020-11-21 …