早教吧作业答案频道 -->数学-->
高一数列证明题已知函数f(x)=(x+3)/(x+1)(x≠-1),设数列{An}满足A1=1,A(n+1)=f(An),数列{Bn}=|An-√3|,Sn=B1+B2+……+Bn(n为正整数)(1)用数学归纳法证明Bn
题目详情
高一数列证明题
已知函数f(x)=(x+3)/(x+1)(x≠-1),设数列{An}满足A1=1,A(n+1)=f(An),数列{Bn}=| An-√3 |,Sn=B1+B2+……+Bn(n为正整数)
(1)用数学归纳法证明Bn<=[(√3 - 1 )^n]/2^(n-1)
(2)证明Sn<2√3/3
已知函数f(x)=(x+3)/(x+1)(x≠-1),设数列{An}满足A1=1,A(n+1)=f(An),数列{Bn}=| An-√3 |,Sn=B1+B2+……+Bn(n为正整数)
(1)用数学归纳法证明Bn<=[(√3 - 1 )^n]/2^(n-1)
(2)证明Sn<2√3/3
▼优质解答
答案和解析
证明:
1.(1)n=1时,B1=|A1-√3|=√3-1
(√3-1)^n/2^(n-1)=√3-1 命题成立.
(2)假设n=k时,命题成立,即有Bk=|Ak-√3|<=(√3-1)^k/2^(k-1) 成立
则B(k+1)=|A(k+1)|=|(Ak+3)/(Ak+1)+1-√3|=|2/(Ak+1)+1-√3|
由 |Ak-√3|<=(√3-1)^k/2^(k-1) 成立,得:
-(√3-1)^k/2^(k-1)<=Ak-√3<=(√3-1)^k/2^(k-1)
【接下来不等式变换,目的是凑成B(k+1)的表达式,不等式三边同加√3+1,再倒数(注意不等号变向),再乘以2,再加 上1-√3,以上都是基本功,不过楼主须耐心计算,】最后约掉2^k,得到下式:
-(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=2/(Ak+1)+1-√3<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
加上绝对值,得:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=|2/(Ak+1)+1-√3|<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
即:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=B(k+1)<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
【比较所要证明的式子,现在只要证明(√3+1)*2^(k-1)-(√3-1)^k>=2^k就可以了】
令t=(√3+1)*2^(k-1)-(√3-1)^k-2^k
=2^k/(√3-1)-2^k-(√3-1)^k
=2^k[1/(√3-1)-1]-(√3-1)^k
(i)k=1时,显然t>=0,即(√3+1)*2^(k-1)-(√3-1)^k>=2^k成立
(ii)k>=2:因为1/(√3-1)-1约=0.36,所以2^k[1/(√3-1)-1]>=2^2*0.36>1
因为00
综合(i)(ii),得:B(k+1)<=(√3-1)^(k+1)/{2^[(k+1)-1]}
综合(1)(2),对于任何n属于N,Bn<=(√3-1)^n/2^(n-1)成立.
2.【利用1中已经证明了的结论】
经计算,B3=√3-5/3所以Sn=B1+B2+……+Bn
=2[(√3-1)^1/2^1+(√3-1)^2/2^2+……+(√3-1)^n/2^n]
<2*{[(√3-1)/2]/[1-(√3-1)/2]}………………………………【等比数列各项和】
=2√3/3 (证明完毕)
1.(1)n=1时,B1=|A1-√3|=√3-1
(√3-1)^n/2^(n-1)=√3-1 命题成立.
(2)假设n=k时,命题成立,即有Bk=|Ak-√3|<=(√3-1)^k/2^(k-1) 成立
则B(k+1)=|A(k+1)|=|(Ak+3)/(Ak+1)+1-√3|=|2/(Ak+1)+1-√3|
由 |Ak-√3|<=(√3-1)^k/2^(k-1) 成立,得:
-(√3-1)^k/2^(k-1)<=Ak-√3<=(√3-1)^k/2^(k-1)
【接下来不等式变换,目的是凑成B(k+1)的表达式,不等式三边同加√3+1,再倒数(注意不等号变向),再乘以2,再加 上1-√3,以上都是基本功,不过楼主须耐心计算,】最后约掉2^k,得到下式:
-(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=2/(Ak+1)+1-√3<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
加上绝对值,得:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=|2/(Ak+1)+1-√3|<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
即:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=B(k+1)<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
【比较所要证明的式子,现在只要证明(√3+1)*2^(k-1)-(√3-1)^k>=2^k就可以了】
令t=(√3+1)*2^(k-1)-(√3-1)^k-2^k
=2^k/(√3-1)-2^k-(√3-1)^k
=2^k[1/(√3-1)-1]-(√3-1)^k
(i)k=1时,显然t>=0,即(√3+1)*2^(k-1)-(√3-1)^k>=2^k成立
(ii)k>=2:因为1/(√3-1)-1约=0.36,所以2^k[1/(√3-1)-1]>=2^2*0.36>1
因为00
综合(i)(ii),得:B(k+1)<=(√3-1)^(k+1)/{2^[(k+1)-1]}
综合(1)(2),对于任何n属于N,Bn<=(√3-1)^n/2^(n-1)成立.
2.【利用1中已经证明了的结论】
经计算,B3=√3-5/3所以Sn=B1+B2+……+Bn
=2[(√3-1)^1/2^1+(√3-1)^2/2^2+……+(√3-1)^n/2^n]
<2*{[(√3-1)/2]/[1-(√3-1)/2]}………………………………【等比数列各项和】
=2√3/3 (证明完毕)
看了 高一数列证明题已知函数f(x...的网友还看了以下:
会做的来解决看,看看你有多厉害、、、、已知定义域为R的函数f(x)在8到正无穷上是减函数,且函数y 2020-04-26 …
数理统计与概率设随机变量X的密度函数为f(x),且f(x)=f(-x),F(x)是X的分布函数,则 2020-05-16 …
(2008年)假定现值为P,等额年金为A,年利率为i,那么n年后的本利和F的计算公式为 ( )。A. 2020-05-19 …
先付年金的终值计算方式为( )。A.(F/P,i,n-1) B.A×(F/A,i,n)×(1+i) 2020-05-30 …
求证若T是函数f(x)的一个周期,则2T也是周期.求证若f(x)是周期函数,则函数a(f)x+b( 2020-06-06 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
高等代数设f(x),g(x)为数域F上的互素多项式设f(x),g(x)为数域F上的互素多项式,M∈ 2020-06-10 …
发动机转速与频率关系推导假如我们得到的定时器值为A,它的时钟源频率为f,转子齿数为m,则有转子1转 2020-07-01 …
┈━═┈━═┈━═┈━═┈━═┈━═┈━═┈━═☆、What'smore:已知摆动数列:1,-1, 2020-07-01 …
20年后每年末从养老金提取6000元(假设期限无限长).存款利率为10%,(A/F,10%,20) 2020-07-16 …