早教吧作业答案频道 -->数学-->
求函数f(t)=(1+sint)/(2+cost)的最值.
题目详情
求函数f(t)=(1+sint)/(2+cost) 的最值.
▼优质解答
答案和解析
求函数f(t)=(1+sint)/(2+cost) 的最值.
解 令k=(1+sint)/(2+cost),则k可看成坐标平面XOY内过点A(cost,sint) 及B(-2,-1) 的直线斜率.
由于A在圆 x^2+y^2=1上运动,可见,当直线BA是圆的切线时,斜率k取得极值.
设过B点的切线方程为:y+1=k(x+2) y=kx+2k-1.则
|2k-1|=√(1+k^2) .(2k-1)^2=1+k^2.
解得:k1=0,k2=4/3.
故f(t) 的最小值为0,f(t) 的最大值为4/3.
解 设tan(A/2)=x,则sinA=2x/(1+x^),cosA=(1-x^2)/(1+x^2).
对f(A)作置换得:令y=f(A)
y=(x^2+2x+1)/(x^2+3)
[y-1]x^2+2x+3y-1=0
因为f(A)是实数,由判别式得:
4-4(y-1)*(3y-1)≥0
3y^2-4y≤0
解此不等式得:0≤y≤4/3.
所以f(A)=(sinA-1)/(cosA-2)的最大值为4/3,最小值为0.
解 令k=(1+sint)/(2+cost),则k可看成坐标平面XOY内过点A(cost,sint) 及B(-2,-1) 的直线斜率.
由于A在圆 x^2+y^2=1上运动,可见,当直线BA是圆的切线时,斜率k取得极值.
设过B点的切线方程为:y+1=k(x+2) y=kx+2k-1.则
|2k-1|=√(1+k^2) .(2k-1)^2=1+k^2.
解得:k1=0,k2=4/3.
故f(t) 的最小值为0,f(t) 的最大值为4/3.
解 设tan(A/2)=x,则sinA=2x/(1+x^),cosA=(1-x^2)/(1+x^2).
对f(A)作置换得:令y=f(A)
y=(x^2+2x+1)/(x^2+3)
[y-1]x^2+2x+3y-1=0
因为f(A)是实数,由判别式得:
4-4(y-1)*(3y-1)≥0
3y^2-4y≤0
解此不等式得:0≤y≤4/3.
所以f(A)=(sinA-1)/(cosA-2)的最大值为4/3,最小值为0.
看了 求函数f(t)=(1+sin...的网友还看了以下:
已知函数定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|则称其为F函数,则f( 2020-04-27 …
设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f( 2020-05-13 …
已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称f(x 2020-05-13 …
若函数f(x)的定义域为R,且存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称f(x) 2020-05-13 …
设函数f(x)的定义域为R,若存在常数m>0使|f(x)|≤m|x|对一切实数x均成立,则称f(x 2020-05-13 …
要求用严密的数学知识、、、、fx=积分下线:x,积分上限x+π/2;被积函数|sint|dt,求证 2020-05-21 …
设关系模式R(A,B,C,D,E,F),函数依赖集F={A->C,C->A,B->AC,D->AC 2020-07-02 …
求函数sint×cost的傅里叶变换 2020-07-13 …
求函数sint×cost的傅里叶变换 2020-07-13 …
高手来····初学关于多元复合函数的微分我看不懂证明的第一步明明分母F函数已经导了为什么还要乘以F 2020-08-02 …