早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设矩阵A=(101030101),矩阵B=(KE+A)的平方,且K属于R.1)求对角阵D,使B与D相似.(2)求的值(2)求K的值,使B为正定矩阵

题目详情
设矩阵A=(101 030 101 ),矩阵 B=(KE+A)的平方,且K属于R.1)求对角阵D,使B与D相似.(2)求 的值
(2)求K的值,使B为正定矩阵
▼优质解答
答案和解析
(1).1 0 1 k+1 0 1
A = 0 3 0 ,kE + A = 0 k+3 0 ,
1 0 1 1 0 k+1
特征多项式为:| λE- (kE+A) | = -(k-λ) (2+k-λ) (3+k-λ),所以得kE + A 的特征值 k,k+2,k+3,也就是说:存在矩阵P,使得kE+A = P^(-1) * Diag(k,k+2,k+3) * P (Diag表示对角阵)
于是,B = (kE+A)^2 = P^(-1) * Diag(k,k+2,k+3) * P * P^(-1) * Diag(k,k+2,k+3) * P =
P^(-1) * Diag(k,k+2,k+3) * Diag(k,k+2,k+3) * P = P^(-1) * Diag(k^2,(k+2)^2,(k+3)^2) * P
所以,D = Diag( k^2,(2+k)^2,(3+k)^2 )
(2).
(k+1)^2 + 1 0 2(k+1)
B = 0 (k+3)^2 0
2(k+1) 0 (k+1)^2 + 1
进行初等变换化成对角阵:第3行 减去 第1行* 2(k+1)/( (k+1)^2 + 1) 消去B(3,1),然后再消去B(1,3).
得到了对角阵:C = Diag( (k+1)^2 + 1,(k+3)^2,k^2 * (k+2)^2 / ( (k+1)^2 + 1) )
B和C相合,所以B正定等价于C正定,C正定等价于每个对角元都是正的,所以只要:k ≠ -3,-2,0即可.
望及时采纳!
看了 设矩阵A=(10103010...的网友还看了以下: