早教吧作业答案频道 -->数学-->
已知各项均为正数的等比数列{An}的前n项和为Sn,A1=3,S3=39(1),求数列{An}的通项公式?(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.+1/dn
题目详情
已知各项均为正数的等比数列{An}的前n项和为Sn,A1=3,S3=39
(1),求数列{An}的通项公式?
(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.+1/dn
(1),求数列{An}的通项公式?
(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.+1/dn
▼优质解答
答案和解析
(1)
S3=a1+a2+a3 =a1(1+q+q^2) =39
1+q+q^2=13
q^2+q-12=0
q1=3 ,q2=-4(与各项为正数矛盾,舍去)
an= a1 q^(n-1)=3* 3^(n-1)=3^n
(2)
an - a'n-1' = 3^n -3^(n-1) = 2*3^(n-1)
依题意 an - a'n-1' = (n+1)dn
所以 dn = [ 2*3^(n-1) ] /(n+1) ,1/dn = (n+1) / [ 2*3^(n-1) ]= (3/2) (n+1) / 3^n
可证明 11/d1 +1d2 +...+1/dn = (3/8) [ 5 - (5 + 2 n) / 3^n ] < 15 / 8
题目中的 5/8 是否写错了?
S3=a1+a2+a3 =a1(1+q+q^2) =39
1+q+q^2=13
q^2+q-12=0
q1=3 ,q2=-4(与各项为正数矛盾,舍去)
an= a1 q^(n-1)=3* 3^(n-1)=3^n
(2)
an - a'n-1' = 3^n -3^(n-1) = 2*3^(n-1)
依题意 an - a'n-1' = (n+1)dn
所以 dn = [ 2*3^(n-1) ] /(n+1) ,1/dn = (n+1) / [ 2*3^(n-1) ]= (3/2) (n+1) / 3^n
可证明 11/d1 +1d2 +...+1/dn = (3/8) [ 5 - (5 + 2 n) / 3^n ] < 15 / 8
题目中的 5/8 是否写错了?
看了 已知各项均为正数的等比数列{...的网友还看了以下:
为什么能通过A(n-1)<An<A(n+1)找出数列中的最大项?这个公式的原理是什么?凭什么大于前 2020-04-09 …
我想知道有没有什么函数的导数是a^x形式的?另外我再问一下,任一已知通项公式的数列有求和的公式么? 2020-04-09 …
有的数列没有通项公式为什么还是函数RT属于新课标人教必修5"对于一个数列而言,A集合就是自然数集, 2020-04-26 …
等比数列{an}中,已知a1=2,a4=16(1)求数列{an}的通项公式;(2)若a3,a5分别 2020-05-13 …
已知数列为递增的等比数列,且、分别是方程的两根.(1)求的值;(2)求数列的通项公式;(3)以数列 2020-05-13 …
已知等差数列{An}前n项和Sn.且满足a2=3.S6=36(1)求数列{An}的通项公式(2)数 2020-05-14 …
求一道数列题已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1) 2020-05-17 …
数列a1=1/2,a(n-1)+1=2an(n≥2)求数列An的通项公式若数列Bn满足:2b1+2 2020-05-21 …
这是近世代数里的一个题,没有证明.我找到了递归公式应该没错,但怎么证明那个结论这是n个数加括号方式 2020-06-06 …
设数列{an}满足a1=A,an+1=Ban+C(n属于自然数A,B,C为常数),试求该数列的通项 2020-06-18 …