早教吧作业答案频道 -->数学-->
数列a1=1/2,a(n-1)+1=2an(n≥2)求数列An的通项公式若数列Bn满足:2b1+2^2b2+~+2^nbn=n2^n,求数列bn的通项公式令Cn=2An×Bn,求数列cn的前n项和Tn
题目详情
数列a1=1/2,a(n-1)+1=2an(n≥2)
求数列An的通项公式
若数列Bn满足:2b1+2^2b2+~+2^nbn=n2^n,求数列bn的通项公式
令Cn=2An×Bn,求数列cn的前n项和Tn
求数列An的通项公式
若数列Bn满足:2b1+2^2b2+~+2^nbn=n2^n,求数列bn的通项公式
令Cn=2An×Bn,求数列cn的前n项和Tn
▼优质解答
答案和解析
由a(n-1)+1=2an变形得
a(n-1)-1=2(an-1)
a(n-1)+1=2an
即an-1=(1/2)[a(n-1)-1]
所以数列{an-1}是以a1-1=1/2-1=-1/2为首项,1/2为公比的等比数列
于是an-1=(-1/2)(1/2)^(n-1)+1
即an=-(1/2)^n+1
2、
由2b1+2^2b2+~+2^nbn=n2^n得
2b1+2^2b2+~+2^(n-1)b(n-1)=(n-1)2^(n-1)
两式相减得2^nbn=n2^n-(n-1)2^(n-1)
2^nbn=(2n+1)2^(n-1)
即bn=(2n+1)/2
3、
Cn=2anbn=-(2n+1)(1/2)^n+(2n+1)=-(2n+1)/2^n+(2n+1)
设数列{(2n+1)/2^n}的前n项和为Sn,数列{2n+1}前n项和为Pn,则Tn=-Sn+Pn
Sn=3/2+5/2²+7/2³+.+(2n+1)/2^n
(1/2)Sn=3/2²+5/2³+.+(2n-1)/2^n+(2n+1)/2^(n+1)
上两式错项相减得(1/2)Sn=3/2+2/2²+2/2³+2/2^n-(2n+1)/2^(n+1)
(1/2)Sn=3/2+1/2+1/2²+1/2³+.+1/2^(n-1)-(2n+1)/2^(n+1)
(1/2)Sn=1/2+1+1/2+1/2²+1/2³+.+1/2^(n-1)-(2n+1)/2^(n+1)
(1/2)Sn=1/2+2[1-(1/2)^n]-(2n+1)/2^(n+1)
Sn=5-(2n+5)/2^n
Pn=3+5+7.+(2n+1)=n(n+1)
所以Tn=-Sn+pn=-5+(2n+5)/2^n+n(n+1)
方法是对的,看我算没算错,你自己检查一下.
a(n-1)-1=2(an-1)
a(n-1)+1=2an
即an-1=(1/2)[a(n-1)-1]
所以数列{an-1}是以a1-1=1/2-1=-1/2为首项,1/2为公比的等比数列
于是an-1=(-1/2)(1/2)^(n-1)+1
即an=-(1/2)^n+1
2、
由2b1+2^2b2+~+2^nbn=n2^n得
2b1+2^2b2+~+2^(n-1)b(n-1)=(n-1)2^(n-1)
两式相减得2^nbn=n2^n-(n-1)2^(n-1)
2^nbn=(2n+1)2^(n-1)
即bn=(2n+1)/2
3、
Cn=2anbn=-(2n+1)(1/2)^n+(2n+1)=-(2n+1)/2^n+(2n+1)
设数列{(2n+1)/2^n}的前n项和为Sn,数列{2n+1}前n项和为Pn,则Tn=-Sn+Pn
Sn=3/2+5/2²+7/2³+.+(2n+1)/2^n
(1/2)Sn=3/2²+5/2³+.+(2n-1)/2^n+(2n+1)/2^(n+1)
上两式错项相减得(1/2)Sn=3/2+2/2²+2/2³+2/2^n-(2n+1)/2^(n+1)
(1/2)Sn=3/2+1/2+1/2²+1/2³+.+1/2^(n-1)-(2n+1)/2^(n+1)
(1/2)Sn=1/2+1+1/2+1/2²+1/2³+.+1/2^(n-1)-(2n+1)/2^(n+1)
(1/2)Sn=1/2+2[1-(1/2)^n]-(2n+1)/2^(n+1)
Sn=5-(2n+5)/2^n
Pn=3+5+7.+(2n+1)=n(n+1)
所以Tn=-Sn+pn=-5+(2n+5)/2^n+n(n+1)
方法是对的,看我算没算错,你自己检查一下.
看了 数列a1=1/2,a(n-1...的网友还看了以下:
设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1为下 2020-04-05 …
数列a1=1/2,a(n-1)+1=2an(n≥2)求数列An的通项公式若数列Bn满足:2b1+2 2020-05-21 …
数列an的前n项和为Sn,Sn=2an-2^n,证明{an-n2^n-1}是等比数列,并求an的通 2020-05-24 …
(1/n2+2/n2+.+n/n2)当n趋向于无穷大时整个函数的极限是多少?后面的2是平方的意思1 2020-06-14 …
数列an满足a1=1 a2=3/2 an+2=3/2an+1-1/2an n属于正整数(n+2和n 2020-06-27 …
已知数列{an}的前n项和是Sn,且Sn+1/2an=1Sn+1/2an=1S(n-1)+1/2a 2020-07-20 …
已知数列{an}的前n项和为Sn,且2Sn=n2+n.(1)求数列{an}的通项公式;(2)若bn 2020-07-21 …
设数列an的前n项和为sn,已知2an-2^n=sn1.证明{an-n2^n-1}是等比数列.求a 2020-07-28 …
1、已知数列{An}满足:A1=1,A2=1/2,且[3+(-1)^n]A-2An+2[(-1)^ 2020-08-01 …
已知数列{An}满足递推关系式:A(n+1)=1/2An^2-An+2,n>=1,n为整数.(1) 2020-08-01 …