早教吧作业答案频道 -->数学-->
如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°
题目详情
如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )
A. △BPQ是等边三角形
B. △PCQ是直角三角形
C. ∠APB=150°
D. ∠APC=135°
A. △BPQ是等边三角形
B. △PCQ是直角三角形
C. ∠APB=150°
D. ∠APC=135°
▼优质解答
答案和解析
∵△ABC是等边三角形,
∴∠ABC=60°,
∵△BQC≌△BPA,
∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,
∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,
∴△BPQ是等边三角形,
∴PQ=BP=4,
∵PQ2+QC2=42+32=25,PC2=52=25,
∴PQ2+QC2=PC2,
∴∠PQC=90°,即△PQC是直角三角形,
∵△BPQ是等边三角形,
∴∠BOQ=∠BQP=60°,
∴∠BPA=∠BQC=60°+90°=150°,
∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,
∵∠PQC=90°,PQ≠QC,
∴∠QPC≠45°,
即∠APC≠135°,
∴选项A、B、C正确,选项D错误.
故选D.
∴∠ABC=60°,
∵△BQC≌△BPA,
∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,
∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,
∴△BPQ是等边三角形,
∴PQ=BP=4,
∵PQ2+QC2=42+32=25,PC2=52=25,
∴PQ2+QC2=PC2,
∴∠PQC=90°,即△PQC是直角三角形,
∵△BPQ是等边三角形,
∴∠BOQ=∠BQP=60°,
∴∠BPA=∠BQC=60°+90°=150°,
∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,
∵∠PQC=90°,PQ≠QC,
∴∠QPC≠45°,
即∠APC≠135°,
∴选项A、B、C正确,选项D错误.
故选D.
看了 如图,P是等边三角形ABC内...的网友还看了以下:
满足{a}⊆M⊆{a,b,c,d}的集合M的个数是( ) 是{a} {a,b} {a,c} {a, 2020-04-05 …
数列{an}是以d(d≠0)为公差的等差数列,a1=2,且a2,a4,a8成等比数列.(Ⅰ)求数列 2020-05-13 …
大学语文下列语句中,使《哀溺文序》的主题思想得到升华的是A.“吾要千钱,重,是以后”,“何不去之” 2020-05-15 …
第十三个五年规划()A.是党的基本路线的核心内容B.是以我国目前发展现状为基本依据的C.完全破解了 2020-05-17 …
抗日战争的胜利留给我们最宝贵的精神财富是A.以爱国主义为核心的伟大民族精神()B.历史不容忘却C. 2020-05-17 …
关于化学反应A+B=C+D,下列说法中正确的是:A.若C是单质,D为化合物,则A和B中一定有一种是 2020-06-06 …
(1)如图1所示,△ABC是正三角形,E,D分别是以C为顶点的CB和AC延长线上的点,且BE=CD 2020-06-06 …
24.把两个全等的直角三角板的斜边重合,组成一个四边形ADBC,以D为顶点作∠MDN,交边AC、B 2020-06-07 …
如图1,已知点A、B的坐标分别为(0,a),(a,0),其中分式3a-4无意义.(1)求S△AOB 2020-06-13 …
下面句中的“以”与“请以战喻”中的“以”用法相同的一项是A.以五十步笑百步,则何如B.斧斤以时入山 2020-06-19 …