早教吧作业答案频道 -->数学-->
三角形纸片ABC,∠C=90°,AB=2BC=12.将纸片折叠使点A总是落在BC边上,记为点D,EF是折痕,如右图.(1)当△DEF是以∠EDF为顶角的等腰三角形时,求△DCF的面积;(2)在BC边上是否存在一点D
题目详情
三角形纸片ABC,∠C=90°,AB=2BC=12.将纸片折叠使点A总是落在BC边上,记为点D,EF是折痕,如右图.
(1)当△DEF是以∠EDF为顶角的等腰三角形时,求△DCF的面积;
(2)在BC边上是否存在一点D,使以D,E,F为顶点的三角形和以D,E,B为顶点的三角形相似?若存在,求出相似比;若不存在,说明理由.
(1)当△DEF是以∠EDF为顶角的等腰三角形时,求△DCF的面积;
(2)在BC边上是否存在一点D,使以D,E,F为顶点的三角形和以D,E,B为顶点的三角形相似?若存在,求出相似比;若不存在,说明理由.
▼优质解答
答案和解析
(1)在Rt△ABC中,sinA=
=
.
∴∠A=30°=∠EDF,AC=AB•cos30°=6
•
△DEF是以∠EDF为顶角的等腰三角形,
∴∠DFE=∠DEF=75°
∴∠DFC=30°,
∴DF=2DC=AF,CF=
DC,
∴
DC+2DC=6
,
∴DC=12
-18,CF=
DC=36-18
∴△DCF的面积s=378
-648;
(2)不存在.理由如下:
在Rt△ABC中,∠A=30°,∠B=60°,
因为∠EDF=30°.
如果△DEF和△BDE相似,则∠BDE和∠BED必须有一个等于30°,显然当D点与C点重合的时候∠BDE最小,此时∠BDE=6 O°,
所以∠BDE不可能等于30°,
如果∠BED=30°,那么∠BDE=90°,而∠DEF=75°,
所以△DEF和△BDE不能相似,
所以,在BC边上不存在点D,使以D、E、F为顶点的三角形和以D、E、B为顶点的三角形相似.
BC |
AB |
1 |
2 |
∴∠A=30°=∠EDF,AC=AB•cos30°=6
3 |
△DEF是以∠EDF为顶角的等腰三角形,
∴∠DFE=∠DEF=75°
∴∠DFC=30°,
∴DF=2DC=AF,CF=
3 |
∴
3 |
3 |
∴DC=12
3 |
3 |
3 |
∴△DCF的面积s=378
3 |
(2)不存在.理由如下:
在Rt△ABC中,∠A=30°,∠B=60°,
因为∠EDF=30°.
如果△DEF和△BDE相似,则∠BDE和∠BED必须有一个等于30°,显然当D点与C点重合的时候∠BDE最小,此时∠BDE=6 O°,
所以∠BDE不可能等于30°,
如果∠BED=30°,那么∠BDE=90°,而∠DEF=75°,
所以△DEF和△BDE不能相似,
所以,在BC边上不存在点D,使以D、E、F为顶点的三角形和以D、E、B为顶点的三角形相似.
看了 三角形纸片ABC,∠C=90...的网友还看了以下:
一道数学几何证明题有一个Rt三角形ABC,角A等于60度.角C等于30度.角B等于90度.以AB为 2020-06-03 …
1.要画一个三角形,需要知道三个元素,其中至少一个元素是2.三角形的三边长a,b,c,满足b分之a 2020-06-08 …
若规定a三角形b等于―|b|,a圆形b等于―a,如a=3,b等于4时,a三角形b等于―|4|等于― 2020-06-09 …
若a,b,c为△ABC的三边,且(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)为 2020-06-12 …
已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△AB 2020-07-09 …
洗耳恭听一道数学选择题已知△ABC的三边a、b、c,满足a²+b+|√(c+6)-3|=10a+2 2020-07-12 …
若△ABC的三边长为abc,满足条件a²+b²+c²+338=10a+24b+26c,则△ABC为 2020-07-19 …
规定一种新的运算:a三角形b等于a乘b减a加1,如3三角形4等于3乘4减3加1,请比较-3三角形2 2020-07-20 …
已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有 2020-07-21 …
已知abc分别为△ABC中∠A∠B∠C的对边,若关于x的方程(a+b)x²-2ac+c-b=0有两 2020-07-30 …