早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(

题目详情
已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=
3
CD,直接写出∠BAD的度数.
作业搜
▼优质解答
答案和解析
作业搜(1)证明:如图1,∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠DAE=90°,
∴∠DAE=∠CAE+∠DAC=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°.
∴∠BCE=∠ACB+∠ACE=90°,作业搜
∴BD⊥CE;
(2)2AD2=BD2+CD2
理由:如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE、DE.
与(1)同理可证CE=BD,CE⊥BD,
∵∠EAD=90°AE=AD,
∴ED=
2
AD,
在RT△ECD中,ED2=CE2+CD2
∴2AD2=BD2+CD2
(3)作业搜如图3,①当D在BC边上时,将线段AD1绕点A顺时针方向旋转90°得到线段AE,连接BE,
与(1)同理可证△ABE≌△ACD1
∴BE=CD1,BE⊥BC,
∵BD=
3
CD,
∴BD1=
3
BE,
∴tan∠BD1E=
BE
BD1
=
3
3

∴∠BD1E=30°,
∵∠EAD1=∠EBD1=90°,
∴四边形A、D1、B、E四点共圆,
∴∠EAB=∠BD1E=30°,
∴∠BAD1=90°-30°=60°;
②当D在BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AF,连接CF.
同理可证:∠CFD2=30°,
∵∠FAD2=∠FCD2=90°,
∴四边形A、F、D2、C四点共圆,
∴∠CAD2=∠CFD2=30°,
∴∠BAD2=90°+30°=120°,
综上,∠BAD的度数为60°或120°.