早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
题目详情
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
AB=CD AB=CD AB=CD∠A=∠C=90° ∠A=∠C=90° ∠A=∠C=90°AM=CN AM=CN AM=CN ,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
DM=BN DM=BN DM=BNDQ=BP DQ=BP DQ=BP∠MDQ=∠NBP ∠MDQ=∠NBP ∠MDQ=∠NBP ,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 1 12 2 2BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:
在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N:(1)如图1,试判断四边形P 2020-05-01 …
什么样的四边形是圆的内接四边形?怎样证明四点共圆?怎样证明一个四边形是圆的内接四边形? 2020-06-06 …
阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形 2020-06-13 …
怎么样形容在大军之中脱颖而出的成语一路坎坷尘土飞扬,、下一句应该怎么说 2020-06-21 …
怎样形容在孤儿院的儿童 2020-06-27 …
(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边 2020-07-02 …
一个正方形,分成四个小正方形,去掉四分之一,剩下的四分之三怎样才能分成面积形状一样的四份一个正方形分 2020-11-15 …
(1)三角形ABC表示一块直角三角形空地,∠ABC=90°,AB=80,BC=60.现要在三角形内划 2020-11-21 …
如何剪成四个一样的图形?如何将两个直角梯形拼成的一个L形剪成四个一样的图形?(在这里,我无法画出那个 2020-12-25 …
如图,正方形ABCD边长为5cm,在AB,BC,CD,AD上分别取E,F,G,H,使AE=BF=CG 2020-12-25 …