早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(α)=sin(α-π2)cos(3π2+α)tan(π-α)tan(-α-π)sin(-α-π),(-π2<α<π2)(Ⅰ)若cos(α-3π2)=15,求f(α)的值.(Ⅱ)若sin(α-π6)=-15,求f(α+π3)的值.

题目详情
已知f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
,(-
π
2
<α<
π
2
)
(Ⅰ)若cos(α-
2
)=
1
5
,求f(α)的值.
(Ⅱ)若sin(α-
π
6
)=-
1
5
,求f(α+
π
3
)的值.
已知f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
,(-
π
2
<α<
π
2
)
(Ⅰ)若cos(α-
2
)=
1
5
,求f(α)的值.
(Ⅱ)若sin(α-
π
6
)=-
1
5
,求f(α+
π
3
)的值.
f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
,(-
π
2
<α<
π
2
)
(Ⅰ)若cos(α-
2
)=
1
5
,求f(α)的值.
(Ⅱ)若sin(α-
π
6
)=-
1
5
,求f(α+
π
3
)的值.
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
sin(α-
π
2
)cos(
2
+α)tan(π-α)tan(-α-π)sin(-α-π)sin(α-
π
2
)cos(
2
+α)tan(π-α)sin(α-
π
2
)cos(
2
+α)tan(π-α)
π
2
π2ππ22
2
3π23π3π22tan(-α-π)sin(-α-π)tan(-α-π)sin(-α-π)
π
2
π2ππ22
π
2
π2ππ22
cos(α-
2
)=
1
5
,求f(α)的值.
(Ⅱ)若sin(α-
π
6
)=-
1
5
,求f(α+
π
3
)的值.
2
3π23π3π22
1
5
151155
sin(α-
π
6
)=-
1
5
,求f(α+
π
3
)的值.
π
6
π6ππ66
1
5
151155f(α+
π
3
)的值.
π
3
π3ππ33
▼优质解答
答案和解析
f(α)=
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
=
-cosα•sinα•(-tanα)
-tanα•sinα
=-cosα,
(Ⅰ)若cos(α-
2
)=
1
5
,则有-sinα=
1
5
,即sinα=-
1
5

再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-α-π)sin(-α-π)
sin(α-
π
2
)cos(
2
+α)tan(π-α)tan(-α-π)sin(-α-π)sin(α-
π
2
)cos(
2
+α)tan(π-α)sin(α-
π
2
)cos(
2
+α)tan(π-α)sin(α-
π
2
π2πππ222)cos(
2
3π23π3π3π222+α)tan(π-α)tan(-α-π)sin(-α-π)tan(-α-π)sin(-α-π)tan(-α-π)sin(-α-π)=
-cosα•sinα•(-tanα)
-tanα•sinα
=-cosα,
(Ⅰ)若cos(α-
2
)=
1
5
,则有-sinα=
1
5
,即sinα=-
1
5

再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-cosα•sinα•(-tanα)
-tanα•sinα
-cosα•sinα•(-tanα)-tanα•sinα-cosα•sinα•(-tanα)-cosα•sinα•(-tanα)-cosα•sinα•(-tanα)-tanα•sinα-tanα•sinα-tanα•sinα=-cosα,
(Ⅰ)若cos(α-
2
)=
1
5
,则有-sinα=
1
5
,即sinα=-
1
5

再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
cos(α-
2
3π23π3π3π222)=
1
5
15111555,则有-sinα=
1
5
,即sinα=-
1
5

再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
1
5
15111555,即sinα=-
1
5

再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
1
5
15111555.
再由-
π
2
<α<
π
2
,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-
π
2
π2πππ222<α<
π
2
π2πππ222,可得cosα=
2
6
5

∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
2
6
5
2
6
52
6
2
6
2
6
6
6
66555.
∴f(α)=-cosα=-
2
6
5

(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-
2
6
5
2
6
52
6
2
6
2
6
6
6
66555.
(Ⅱ)f(α+
π
3
)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
f(α+
π
3
π3πππ333)=-cos(α+
π
3
)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-cos(α+
π
3
π3πππ333)=-(cosαcos
π
3
-sinαsin
π
3
)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-(cosαcos
π
3
π3πππ333-sinαsin
π
3
π3πππ333)
=-(
1
2
cosα-
3
2
sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
-(
1
2
12111222cosα-
3
2
3
2
3
3
3
3
3
33222sinα)=
3
2
sinα-
1
2
cosα=sin(α-
π
6
)=-
1
5
3
2
3
2
3
3
3
3
3
33222sinα-
1
2
12111222cosα=sin(α-
π
6
)=-
1
5
sin(α-
π
6
π6πππ666)=-
1
5
15111555.