早教吧作业答案频道 -->数学-->
已知f(α)=sin(α-π2)cos(3π2+α)tan(π-α)tan(-α-π)sin(-α-π),(-π2<α<π2)(Ⅰ)若cos(α-3π2)=15,求f(α)的值.(Ⅱ)若sin(α-π6)=-15,求f(α+π3)的值.
题目详情
已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α)
π 2 π π 2 2
3π 2 3π 3π 2 2 tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)
π 2 π π 2 2
π 2 π π 2 2
cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
3π 2 3π 3π 2 2
1 5 1 1 5 5
sin(α-
)=-
,求f(α+
)的值.
π 6 π π 6 6
1 5 1 1 5 5 f(α+
)的值.
π 3 π π 3 3
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
π |
2 |
cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
3π |
2 |
1 |
5 |
sin(α-
π |
6 |
1 |
5 |
π |
3 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
▼优质解答
答案和解析
f(α)=
=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α) sin(α-
π 2 π π π2 2 2)cos(
3π 2 3π 3π 3π2 2 2+α)tan(π-α)tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
-cosα•sinα•(-tanα) -tanα•sinα -cosα•sinα•(-tanα) -cosα•sinα•(-tanα) -cosα•sinα•(-tanα)-tanα•sinα -tanα•sinα -tanα•sinα=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. cos(α-
3π 2 3π 3π 3π2 2 2)=
1 5 1 1 15 5 5,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
π 2 π π π2 2 2<α<
π 2 π π π2 2 2,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
2
5 2
2
2
6 6 6 65 5 5.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
2
5 2
2
2
6 6 6 65 5 5.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. f(α+
π 3 π π π3 3 3)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -cos(α+
π 3 π π π3 3 3)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(cosαcos
π 3 π π π3 3 3-sinαsin
π 3 π π π3 3 3)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(
1 2 1 1 12 2 2cosα-
2
3 3 3 32 2 2sinα)=
sinα-
cosα=sin(α-
)=-
.
2
3 3 3 32 2 2sinα-
1 2 1 1 12 2 2cosα=sin(α-
)=-
. sin(α-
π 6 π π π6 6 6)=-
1 5 1 1 15 5 5.
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
2 |
| ||
2 |
3 |
3 |
3 |
3 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
| ||
2 |
3 |
3 |
3 |
3 |
1 |
2 |
π |
6 |
1 |
5 |
π |
6 |
1 |
5 |
看了 已知f(α)=sin(α-π...的网友还看了以下:
高一数学月考题.已知sin[π+α]=-1/2,求sinα,cosα,tanα的值已知sin[π+ 2020-05-16 …
三角函数基础练习已知α,β是锐角,且sinα=根号5分之1,sinβ=根号10分之1,则α+β=( 2020-05-21 …
数学题问答(三角函数)已知sinα的值,在区间[﹣pai/2,pai/2]内求角αsinα=√3/ 2020-06-06 …
1.计算:cot(-15π/4)注:括号内是四分之十五派2.证明:(tanα+secα-1)/(t 2020-06-13 …
sin(α-β)cosβ+cos(α-β)sinβ=?已知sinα=3/5,sinβ=5/13且α 2020-06-15 …
已知sinθ+cosθ=(√3+1)/2,求sinθ/1-(1/tanθ)+cosθ/(1-tan 2020-07-20 …
1.已知cos165º=a,求tan195º?2.已知sin(π+a)=1/2,求sin(2π-a 2020-07-22 …
同角基本关系专题(2)θαπ3.已知(sinα+cosα)/(sinα-cosα)=3,求(1)( 2020-07-30 …
已知sinα=负的2分之根号3,且α为第四象限角,求cosα,tanα,cotα的值.已知cosα 2020-08-03 …
已知sin的平方2asin2acosa-cos2a=1,a属于(0,pai/2),使函数f(x)=s 2020-12-08 …