早教吧作业答案频道 -->数学-->
设t>0,已知函数f(x)=x2(x-t)的图象与x轴交于A、B两点.(1)求函数f(x)的单调区间;(2)设函数y=f(x)在点P(x0,y0)处的切线的斜率为k,当x0∈(0,1]时,k≥-12恒成立,求t的最大值;(
题目详情
设t>0,已知函数f (x)=x2(x-t)的图象与x轴交于A、B两点.
(1)求函数f (x)的单调区间;
(2)设函数y=f(x)在点P(x0,y0)处的切线的斜率为k,当x0∈(0,1]时,k≥-
12恒成立,求t的最大值;
(3)有一条平行于x轴的直线l恰好与函数y=f(x)的图象有两个不同的交点C,D,若四边形ABCD为菱形,求t的值.
(1)求函数f (x)的单调区间;
(2)设函数y=f(x)在点P(x0,y0)处的切线的斜率为k,当x0∈(0,1]时,k≥-
12恒成立,求t的最大值;
(3)有一条平行于x轴的直线l恰好与函数y=f(x)的图象有两个不同的交点C,D,若四边形ABCD为菱形,求t的值.
▼优质解答
答案和解析
分析:(1)由导数大于0可求单调递增区间,导数小于0可求单调递减区间;
(2)当x0∈(0,1]时,k≥-1/2 恒成立,转化为即t≤(3x0^2+1/2) / 2x0 ,x0∈(0,1]只需求其最小值;(3)由题意画出图象,用距离相等可求t的值.
(1)∵函数f (x)=x^2(x-t)=x^3-tx^2,∴f′(x)=3x^2-2tx=x(3x-2t)
令x(3x-2t)<0,解得0<x<2t,(t>0);令x(3x-2t)>0,解得x<0,或x> 2t / 3,
故函数f (x)的单调递减区间为(0,2t / 3 );单调递增区间为(-∞,0)和(2t / 3,+∞).
(注意:二,三问是以图片形式解答的,可能有点小,你可以把它下载下来再看,绝对清楚)
(2)当x0∈(0,1]时,k≥-1/2 恒成立,转化为即t≤(3x0^2+1/2) / 2x0 ,x0∈(0,1]只需求其最小值;(3)由题意画出图象,用距离相等可求t的值.
(1)∵函数f (x)=x^2(x-t)=x^3-tx^2,∴f′(x)=3x^2-2tx=x(3x-2t)
令x(3x-2t)<0,解得0<x<2t,(t>0);令x(3x-2t)>0,解得x<0,或x> 2t / 3,
故函数f (x)的单调递减区间为(0,2t / 3 );单调递增区间为(-∞,0)和(2t / 3,+∞).
(注意:二,三问是以图片形式解答的,可能有点小,你可以把它下载下来再看,绝对清楚)
看了 设t>0,已知函数f(x)=...的网友还看了以下:
赶时间,超级急迫,对于定义域为R的函数f(x),若存在实数x0有f(x0)=x0,则称x0,使得f 2020-06-10 …
若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函 2020-07-01 …
函数的最值设函数f(x)的定义域为R,则下列四个命题:(1)若存在常数M,使得对于任意的x∈R,有 2020-07-25 …
给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″( 2020-07-31 …
给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″( 2020-07-31 …
导函数定义如何理解导函数定义设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x 2020-07-31 …
高一数学:对于函数f(x)(x属于D),若存在x0属于D使f(x0)=x0,则称(x0,x0)为f 2020-08-01 …
对函数f(x),如果存在x0≠0使得f(x0)=-f(-x0),则称(x0,f(x0))与(-x0 2020-08-01 …
若存在x0,n属于N,使f(x0)+f(x0+1)+……+f(x0+n)=63成立若存在x0,n属于 2020-10-31 …
已知函数y=f(x),下列说法错误的是()A.△y=f(x0+△x)-f(x0)叫函数值的改变量B. 2020-11-01 …