早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.(Ⅰ)求M的轨迹方程;(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.

题目详情
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
(Ⅰ)求M的轨迹方程;
(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.
▼优质解答
答案和解析
(I)圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4,
设M(x,y),则
CM
=(x,y−4),
MP
=(2−x,2−y),
由题设知
CM
MP
=0,
故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,
所以M的轨迹方程是(x-1)2+(y-3)2=2.…(6分)
(II)由(1)可知M的轨迹是以点N(1,3)为圆心,
2
为半径的圆.
由于|OP|=|OM|,故O在线段PM的垂直平分线上,
又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,
所以l的斜率为
1
3

故l的方程为y=−
1
3
x+
8
3

|OP|=|OM|=2
2
,O到l的距离为
4
10
5
|PM|=
4
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号