早教吧作业答案频道 -->数学-->
求写最短路径算法.由A地到E地,途经B(B1,B2,B3)C(C1,C2,C3)地,基于矩阵乘法求最短路径.我们把求A→E的最短路分解为四个阶段A→B→C→D→E每一个阶段可以用一个矩阵来表示,这个矩阵称
题目详情
求写最短路径算法.由A地到E地,途经B(B1,B2,B3)C(C1,C2,C3)地,基于矩阵乘法求最短路径.
我们把求A →E 的最短路分解为四个阶段A →B →C→D →E 每一个阶段可以用一个矩阵来表示,这个矩阵称为权矩阵.相邻阶段的路径可以用权矩阵的乘积来表示.但这里的矩阵乘法和普通矩阵乘积运算的区别是:普通矩阵乘积其对应元素是相应元素乘积的代数和,这里把元素相乘改为相加,元素的代数和改为取小运算,如果不同层节点间没有连接,则视它们之间的距离为无穷大.如果是求极大,改为取大运算,此时如果不同层节点间没有连接,则视它们的距离为0.
如下:
由A地到B地的距离可表示为:A[2 5 8]
由B地到C地的权矩阵可表示为
[3,6,5;7,10,8;4,9,6]
因此由A到C的权矩阵为[2,5,8][3,6,5;7,10,8;4,9,6]=[5,8,7]
因此由A到D的权矩阵为[5,8,7)][7,5;3,4;5,2]=[11 ,9]
由A→E的权矩阵为:[11 ,9][4,2)]=[15,11]
因此从家里到学校的最短距离为11百米,最近的路径为从A地出发经过B1地C1地D2地到达E地.
下面我们给出基于“矩阵乘法”求解最短路的算法:
第一阶段:计算出图中从起始点到终点最短路的长度.
step1 划分出该网络图中的层次关系(网络划分为N 层,起点为第一层,终点为第N 层) ;
step2 依次给出从第i 层到第i + 1 层的权矩阵( i= 1 ,2 ,…,N21) ; (若第i 层有m 个顶点;第i + 1 层有n
个顶点,则从第i 层到第i + 1 层的权矩阵为m *n
阶) .
step3 按照我们定义的矩阵乘法计算出最短路的
数值.
第二阶段:寻找最短路所经过的中间点.
(利用第一阶段中step2 的数据) 计算出从第i 层到
终点的最短路,对比与i21 层到终点的最短路,从而确
定出第i 层上最短路所经过的顶点( i = 2 ,…,N21) .
依照上面步骤写一个算法,或者根据题目另外写一个也可以.
我们把求A →E 的最短路分解为四个阶段A →B →C→D →E 每一个阶段可以用一个矩阵来表示,这个矩阵称为权矩阵.相邻阶段的路径可以用权矩阵的乘积来表示.但这里的矩阵乘法和普通矩阵乘积运算的区别是:普通矩阵乘积其对应元素是相应元素乘积的代数和,这里把元素相乘改为相加,元素的代数和改为取小运算,如果不同层节点间没有连接,则视它们之间的距离为无穷大.如果是求极大,改为取大运算,此时如果不同层节点间没有连接,则视它们的距离为0.
如下:
由A地到B地的距离可表示为:A[2 5 8]
由B地到C地的权矩阵可表示为
[3,6,5;7,10,8;4,9,6]
因此由A到C的权矩阵为[2,5,8][3,6,5;7,10,8;4,9,6]=[5,8,7]
因此由A到D的权矩阵为[5,8,7)][7,5;3,4;5,2]=[11 ,9]
由A→E的权矩阵为:[11 ,9][4,2)]=[15,11]
因此从家里到学校的最短距离为11百米,最近的路径为从A地出发经过B1地C1地D2地到达E地.
下面我们给出基于“矩阵乘法”求解最短路的算法:
第一阶段:计算出图中从起始点到终点最短路的长度.
step1 划分出该网络图中的层次关系(网络划分为N 层,起点为第一层,终点为第N 层) ;
step2 依次给出从第i 层到第i + 1 层的权矩阵( i= 1 ,2 ,…,N21) ; (若第i 层有m 个顶点;第i + 1 层有n
个顶点,则从第i 层到第i + 1 层的权矩阵为m *n
阶) .
step3 按照我们定义的矩阵乘法计算出最短路的
数值.
第二阶段:寻找最短路所经过的中间点.
(利用第一阶段中step2 的数据) 计算出从第i 层到
终点的最短路,对比与i21 层到终点的最短路,从而确
定出第i 层上最短路所经过的顶点( i = 2 ,…,N21) .
依照上面步骤写一个算法,或者根据题目另外写一个也可以.
▼优质解答
答案和解析
们把求A →E 的最短路分解为四个阶段A →B →C→D →E 来求解.每一个阶段可以用一个矩阵来表示,这个矩阵称为权矩阵.相邻阶段的路径可以用权矩阵的乘积来表示.但这里的矩阵乘法和普通矩阵乘积运算的区别是:普通矩阵乘积其对应元素是相应元素乘积的代数和,这里把元素相乘改为相加,元素的代数和改为取小运算,如果不同层节点间没有连接,则视它们之间的距离为无穷大. 如果是求极大,改为取大运算,此时如果不同层节点间没有连接,则视它们的距离为0.
如下:
由A地到B地的距离可表示为:A[2 5 8]
由B地到C地的权矩阵可表示为
[3,6,5;7,10,8;4,9,6]
因此由A到C的权矩阵为[2,5,8][3,6,5;7,10,8;4,9,6]=[5,8,7]
因此由A到D的权矩阵为[5,8,7)][7,5;3,4;5,2]=[11 ,9]
由A→E的权矩阵为:[11 ,9][4,2)]=[15,11]
因此从家里到学校的最短距离为11百米,最近的路径为从A地出发经过B1地C1地D2地到达E地.
下面我们给出基于“矩阵乘法”求解最短路的算法:
第一阶段:计算出图中从起始点到终点最短路的长度.
step1 划分出该网络图中的层次关系(网络划分为N 层,起点为第一层,终点为第N 层) ;
step2 依次给出从第i 层到第i + 1 层的权矩阵( i= 1 ,2 , …, N21) ; (若第i 层有m 个顶点;第i + 1 层有n
个顶点, 则从第i 层到第i + 1 层的权矩阵为m *n
阶) .
step3 按照我们定义的矩阵乘法计算出最短路的
数值.
第二阶段:寻找最短路所经过的中间点.
(利用第一阶段中step2 的数据) 计算出从第i 层到
终点的最短路, 对比与i21 层到终点的最短路, 从而确
定出第i 层上最短路所经过的顶点( i = 2 , …, N21) .
如下:
由A地到B地的距离可表示为:A[2 5 8]
由B地到C地的权矩阵可表示为
[3,6,5;7,10,8;4,9,6]
因此由A到C的权矩阵为[2,5,8][3,6,5;7,10,8;4,9,6]=[5,8,7]
因此由A到D的权矩阵为[5,8,7)][7,5;3,4;5,2]=[11 ,9]
由A→E的权矩阵为:[11 ,9][4,2)]=[15,11]
因此从家里到学校的最短距离为11百米,最近的路径为从A地出发经过B1地C1地D2地到达E地.
下面我们给出基于“矩阵乘法”求解最短路的算法:
第一阶段:计算出图中从起始点到终点最短路的长度.
step1 划分出该网络图中的层次关系(网络划分为N 层,起点为第一层,终点为第N 层) ;
step2 依次给出从第i 层到第i + 1 层的权矩阵( i= 1 ,2 , …, N21) ; (若第i 层有m 个顶点;第i + 1 层有n
个顶点, 则从第i 层到第i + 1 层的权矩阵为m *n
阶) .
step3 按照我们定义的矩阵乘法计算出最短路的
数值.
第二阶段:寻找最短路所经过的中间点.
(利用第一阶段中step2 的数据) 计算出从第i 层到
终点的最短路, 对比与i21 层到终点的最短路, 从而确
定出第i 层上最短路所经过的顶点( i = 2 , …, N21) .
看了 求写最短路径算法.由A地到E...的网友还看了以下:
这是关于线性代数的问题: 就是在这里说了句因为矩阵A^k,A^l和E都是可交换的,所以矩阵A的两个 2020-05-13 …
【线性代数】一个关于向量的问题矩阵A中任意一个r+1阶子式都为0的充要条件是A的任意一个r+1个行 2020-05-14 …
A、B、E为矩阵,A=1/2(B+E),当且仅当B^2为何值时,A^2=A?填空题,E应该为单位矩 2020-06-30 …
三阶矩阵A=101011−10a0a−1,AT为矩阵A的转置,已知r(ATA)=2,且二次型f=x 2020-07-09 …
数据结构中稀疏矩阵与数组下标问题有一个三对角线的NxN矩阵A,将其三条对角线上的元素逐行存储到数组 2020-07-29 …
矩阵的秩我们教材上对秩的定义为:非零矩阵A的不等于0的子式的最高阶数称为矩阵A的秩.但是考察3*3 2020-08-02 …
A^(-1)=(1/|A|)×A*,其中A^(-1)表示矩阵A的逆矩阵,其中|A|为矩阵A的行列式 2020-08-02 …
设A为3阶方阵,A*为A的伴随矩阵,|A|=0.125,计算|(1/3A)-8A*|.|A|为矩阵A 2020-10-30 …
证明矩阵可逆现在有矩阵A构造矩阵N,它的列构成NulA的基,(NulA为矩阵A的化零空间,也就是Ax 2020-11-03 …
矩阵秩的问题.A^2-A=A(A-E),因为矩阵A可逆,为什么就可以直接得出r(A^2-A)=r(A 2020-11-11 …