早教吧作业答案频道 -->数学-->
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立
题目详情
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题
我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.
第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立;则在P(k)成立的假定下可以证明P(k+1)成立,那么P(n)对于任意自然数n皆成立.例如:
求证:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 对于任意自然数n成立
证明:当n=1时,左边=1^2=1,右边=1,∴n=1求证式成立
设n=k时求证式成立,则n=k+1时有 1^2+2^2+...+k^2+(k+1)^2
=(1^2+2^2+...+k^2) + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)(k+2)(2k+3)/6
即n=k+1时求证式已成立,综上可知求证式对于任意自然数成立
上面的过程还有第一数学归纳法我都看懂了、就是不知道为什么能这样?为什么能
n=1时成立,设n=k成立,若n=k+1对原式成立,那么原式对任意自然数都成立?为啥?第一归纳法是怎么来的?
我在一本很牛叉的中学思想方法书上看到用“第一数学归纳法”证明.
第一数学归纳法:设P(n)是依赖与自然数n的命题,若P(n)当n=1时成立;则在P(k)成立的假定下可以证明P(k+1)成立,那么P(n)对于任意自然数n皆成立.例如:
求证:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 对于任意自然数n成立
证明:当n=1时,左边=1^2=1,右边=1,∴n=1求证式成立
设n=k时求证式成立,则n=k+1时有 1^2+2^2+...+k^2+(k+1)^2
=(1^2+2^2+...+k^2) + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)(k+2)(2k+3)/6
即n=k+1时求证式已成立,综上可知求证式对于任意自然数成立
上面的过程还有第一数学归纳法我都看懂了、就是不知道为什么能这样?为什么能
n=1时成立,设n=k成立,若n=k+1对原式成立,那么原式对任意自然数都成立?为啥?第一归纳法是怎么来的?
▼优质解答
答案和解析
数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立.
首先证明的不一定是n=1,一般都是第一项就行.
而且验证设n=k成立时,首先K值是集合中任意满足的.
也就是说是定义域,验证若n=k+1对原式成立,是后一项,也就是递推性的原理
加入k=3,哪后一项就是4,同理R就是R+1,也就是无限下去,全都满足,当然也就满足的所有数.
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理).但是在另一些公理的基础上,它可以用一些逻辑方法证明.数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的.(每个非空的正整数集合都有一个最小的元素)
比如{1,2,3 ,4,5}这个正整数集合中有最小的数——1.
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立.
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k.(1是不属于集合S的,所以k>1)
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾.所以这个完成两个步骤的命题能够对所有n都成立.[1]
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式.更确切地说,两者是等价的.
首先证明的不一定是n=1,一般都是第一项就行.
而且验证设n=k成立时,首先K值是集合中任意满足的.
也就是说是定义域,验证若n=k+1对原式成立,是后一项,也就是递推性的原理
加入k=3,哪后一项就是4,同理R就是R+1,也就是无限下去,全都满足,当然也就满足的所有数.
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理).但是在另一些公理的基础上,它可以用一些逻辑方法证明.数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的.(每个非空的正整数集合都有一个最小的元素)
比如{1,2,3 ,4,5}这个正整数集合中有最小的数——1.
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立.
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k.(1是不属于集合S的,所以k>1)
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾.所以这个完成两个步骤的命题能够对所有n都成立.[1]
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式.更确切地说,两者是等价的.
看了 第一数学归纳法证明:1^2+...的网友还看了以下:
甲乙两只蜗牛以各自不变的速度同时从A地爬向B地,当甲蜗牛爬了五分之三米时,乙蜗牛爬行了全程的五分之 2020-04-07 …
式子(m-2n-3)(m-2n+3)+9的算术平方根是()A.m-2nB.2n-mC.当m≥2n时 2020-04-11 …
已知定义在[1,+∞)上的函数f(x)=4−8|x−32|,1≤x≤212f(x2),x>2当x∈ 2020-05-14 …
已知定义在[1,+∞)上的函数f(x)=4-8|x-32|,1≤x≤212f(x2),x>2,当x 2020-05-14 …
某牧场管理员想设计一个自动放养奶牛的装置,用细导线将奶牛群围住,当奶牛在圈内吃草时,小屋内灯亮;当 2020-05-17 …
已知f(x)是定义在自然数集N*上的函数,当x=2n-1(n属于N*)时,有f(x+1)-f(x) 2020-07-27 …
牧场管理员想设计一个能自动放养牛、羊的装置,用细导线将牛、羊群围住,当牛、羊在圈内吃草时,小屋内指示 2020-11-24 …
用一水平向右的作用力F拉一个放在水平面上重为200牛的物体(物体与平面的最大摩擦力为80牛)物体在运 2020-12-09 …
放在地面的箱子重100牛,当用20牛的水平力推它时,木箱没有动,地面对木箱的摩擦力是牛;当用30牛的 2020-12-28 …
下面列举的具体育种方法中,属于诱变育种的是()A.用硫酸二乙酯处理农作物种子B.用秋水仙素处理萌发的 2021-01-02 …