早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈N*,0≤r≤n-1);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>12)

题目详情
(1)证明:①C
 
r
n
+C
 
r+1
n
=C
 
r+1
n+1
;②C
 
n+1
2n+2
=2C
 
n
2n+1
(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>
1
2
),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
▼优质解答
答案和解析
(1)①Cnr+Cnr+1=
n!
r!(n-r)!
+
n!
(r+1)!(n-r-1)!
=
n![(r+1)+(n-r)]
(r+1)!(n-r)!
=
(n+1)!
(r+1)![(n+1)-(r+1)]!
=Cn+1r+1
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C
 
n
2n+1

(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<
1
2

记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
看了 (1)证明:①Crn+Cr+...的网友还看了以下: