早教吧作业答案频道 -->数学-->
(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈N*,0≤r≤n-1);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>12)
题目详情
(1)证明:①C
+C
=C
;②C
=2C
(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>
),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
r n |
r+1 n |
r+1 n+1 |
n+1 2n+2 |
n 2n+1 |
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>
1 |
2 |
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
▼优质解答
答案和解析
(1)①Cnr+Cnr+1=
+
=
=
=Cn+1r+1;
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C
;
(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<
.
记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
n! |
r!(n-r)! |
n! |
(r+1)!(n-r-1)! |
n![(r+1)+(n-r)] |
(r+1)!(n-r)! |
(n+1)! |
(r+1)![(n+1)-(r+1)]! |
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C
n 2n+1 |
(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<
1 |
2 |
记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
看了 (1)证明:①Crn+Cr+...的网友还看了以下:
小东和甲乙丙丁四个朋友进行乒乓球比赛小东甲乙丙丁有五人参加乒乓球比赛每2个人比赛一局到现在为止小东 2020-06-07 …
(1)证明:①Crn+Cr+1n=Cr+1n+1;②Cn+12n+2=2Cn2n+1(其中n,r∈ 2020-06-11 …
a、b、c、d、e、f六人举行象棋比赛.已知e赛了5局,c、d各赛了3局,a、b各赛了2局,f赛了 2020-06-22 …
甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两个人继续比赛,直到分出胜负,负者退下,由另一个 2020-06-22 …
1.甲.乙.丙三人比赛下象棋,每局比赛完后,若是和棋,则这两人继续比赛,直到分出胜负,负者下.甲胜 2020-07-16 …
甲、乙、丙三人比赛象棋,每局比赛后,若是和局,则这两人继续比赛,直到分出胜负,负者退下,比赛完毕后 2020-07-16 …
有n支球队参加排球联赛,每一队与其余各队比赛2次,如果联赛的总场次是132,共有多少球队参加联赛?与 2020-10-30 …
有n位选手参加围棋比赛,计分方法是每局比赛胜者得2分,负者得0分,平局各得1分.比赛中途的积分表上得 2020-12-26 …
甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两个人继续比赛,直到分出胜负,负者退下,由另一个与 2021-01-14 …
在某次中国象棋比赛中,组委会运用如图所示的程序框图统计比赛的总局数n及比赛双方的得分S、T.比赛约定 2021-01-15 …