早教吧作业答案频道 -->数学-->
如何解分式方程?
题目详情
如何解分式方程?
▼优质解答
答案和解析
分式方程的解法
①去分母
方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时,不要忘了改变符号.
②按解整式方程的步骤
移项,若有括号应去括号,注意变号,合并同类项,把系数化为1,求出未知数的值.
③验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根.否则这个根就是原分式方程的根.若解出的根是增根,则原方程无解.
如果分式本身约分了,也要带进去检验.
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意.
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
★注意
(1)注意去分母时,不要漏乘整式项.
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的解.
(3)増根使最简分母等于0.
归纳
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法.
①去分母
方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时,不要忘了改变符号.
②按解整式方程的步骤
移项,若有括号应去括号,注意变号,合并同类项,把系数化为1,求出未知数的值.
③验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根.否则这个根就是原分式方程的根.若解出的根是增根,则原方程无解.
如果分式本身约分了,也要带进去检验.
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意.
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
★注意
(1)注意去分母时,不要漏乘整式项.
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的解.
(3)増根使最简分母等于0.
归纳
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法.
看了 如何解分式方程?...的网友还看了以下:
为什么非线性齐次微分方程特解就一种形式在解非齐次线性微分方程时,其解为(其对应的齐次方程通解+非齐次 2020-03-30 …
一道常微分方程我用全微分法中的两种方法算出来不一样这个方程是恰当方程,然后我用书上给的这两个公式算 2020-04-25 …
求一阶微分方程式S(x)=(x^4)/2*4+(x^6)/2*4*6+(x^8)2*4*6*8+. 2020-04-26 …
初二的(分式)方程题;要用方程(最好是分式方程)解答一批货物准备运往某地,有甲、乙、丙三辆卡车可雇 2020-05-14 …
化学方程式!急用! 金属部分方程式训练 1钠和氧气:常温______________加热:_化学方 2020-05-17 …
微分方程的解形式不同可以吗我在解微分方程时由于最后的解题步骤和常系数C的设置与答案不同导致求出来的 2020-06-27 …
问一个关于微分方程的低级问题,y''+4y'-5y=x具有何种形式的特解?根据各微分方程右端的非齐 2020-07-09 …
常微分方程的通解形式唯一吗?常微分方程的通解形式是否唯一(不是由于任意常数c导致的形式不同,而是由 2020-07-31 …
为什么说分式方程不是整式方程?分式方程也可以化成整式方程啊?为什么这么说?还有为什么说分式方程的解 2020-08-02 …
雅克比行列式证明微分方程的通解时怎么用?在高等数学的微分方程部分经常用雅克比行列式来证明微分方程的 2020-08-03 …
相关搜索:如何解分式方程