早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
题目详情
已知数列{an}的前n项和为Sn,且a1=1/2,a(n+1)=(n+1)an/2n,(1)求{an}的通项公式;(2)设bn=n(2-Sn),n属于N*,若集合M={n|bn大于等于μ,n属于N*}恰有4个元素,求实数μ的取值范围.
▼优质解答
答案和解析
(1)
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
a(n+1)=(n+1)an/(2n)
a(n+1)/(n+1) = (1/2) (an/n)
{an/n} 是等比数列,q=1/2
an/n = (1/2)^(n-1) .( a1/1)
= (1/2)^n
an = n.(1/2)^n
(2)
let
S = 1.(1/2)^1+2(1/2)^2+.+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2(1/2)^3+.+n.(1/2)^(n+1) (2)
(1) -(2)
(1/2)S = (1/2 + 1/2^2+...+1/2^n)-n(1/2)^(n+1)
= (1-1/2^n) - n(1/2)^(n+1)
S = 2 - (n+2)(1/2)^n
Sn =a1+a2+...+an
= S
= 2 - (n+2)(1/2)^n
bn = n(2-Sn)
= n(n+2)(1/2)^n
let
f(x) = x(x+2) (1/2)^x
f'(x) =( -x(x+2)ln2 + (2x+2) ) (1/2)^x =0
-x(x+2)ln2 + (2x+2)=0
(ln2)x^2 -(2-2ln2)x - 2 =0
x = 1.31
b1= 3(1/2)^1 = 3/2
b2 = 8(1/2)^2 = 2
max bn= b2 = 2
b3 = 15(1/8) = 15/8
b4 = 24(1/16) = 3/2
b5 = 35/32
M={n|bn>μ,n属于N*}恰有4个元素
35/32
看了 已知数列{an}的前n项和为...的网友还看了以下:
1、设数列{an}的前n项和Sn=2an-2^n.(1)求a3,a4;(2)证明:{an+1-2a 2020-05-13 …
1.设集合A={x|mx+1=0},B={1,2},若A真包含于B,求实数m的值.2.设集合A={ 2020-05-16 …
设等差数列{an}的前n项和为Sn,且S4=4S2设等差数列{an}的前n项和为Sn,且Sn=4S 2020-05-17 …
设函数-x^2+7x-12>0的解集为A.(1)求集合A(2)设p:x属于A,q:x>a.且q是p 2020-05-23 …
设求函数y=3x^2/x^3+4的最大值 2020-06-02 …
设函数f(x)=ax(3x上面)+bx(2在x上面)+x在x=1处取得极大值5.求常数a和b.求函 2020-07-08 …
急设Sn为等比数列前n项和,a2=4,S2=2,(一)求an,(二)设等差数列bn前n项和为设Sn 2020-07-09 …
设数列{an}的前n项和为Sn,已知A1=1,sn=na1-n(n-1),求证数列an为等差数列设 2020-07-18 …
((本小题满分14分)设数列为等比数列,数列满足,,已知,,其中.(Ⅰ)求数列的首项和公比;(Ⅱ) 2020-07-22 …
设一均匀的骰子连丢10次,求点数之和在30到40之间的概率.已用切比雪夫不等式求出,但得出负数,求理 2020-11-21 …