早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知n^2+5n+13是完全平方数,则自然数na.不存在b.仅有一个c.不止一个,但有有限个d.有无穷多个我知道答案是B假设为n^2+5n+13=(n+k)^2于是(n+k)^2=n^2+2nk+k^2跟原式子对比,2nk+k^2=5n+13n=(k^2-13)/(5-2k)如

题目详情
已知n^2+5n+13是完全平方数,则自然数n
a.不存在
b.仅有一个
c.不止一个,但有有限个
d.有无穷多个
我知道答案是B
假设为n^2+5n+13=(n+k)^2
于是(n+k)^2=n^2+2nk+k^2
跟原式子对比,2nk+k^2=5n+13
n = (k^2-13)/(5-2k)
如果n是自然数,则应该不小于0 (从式子里看出不等于0)
所以k^2>13并且5>2k 不存在 【关键是这步k
▼优质解答
答案和解析
其实这你在证明之前加上一句话就不会有疑问了——不妨设k>0;因为假设k是负数的话,那k的绝对值必然大于n,这很容易可以得出.如果你前面部设定k>0,那只是自己为自己增加难度,因为你还要考虑 (k^2-13)可以整除5-2k 我现在提供另一个思路给你试试.假设n^2+5n+13=m^2 则n^2+5n+4=m^2-9; ∴(n+1)(n+4)=(m-3)(m+3); 不难得出n+1>m-3则(n+1)/(m-3)=(m+3)/(n+4); 所以n+4
作业帮用户 2017-10-27