早教吧作业答案频道 -->数学-->
f(k)定义在N+上,在N+中取值的严格增函数,且f(f(k))=3k求f(1)+f(9)+f(96
题目详情
f(k)定义在N+上,在N+中取值的严格增函数,且f(f(k))=3k求f(1)+f(9)+f(96
▼优质解答
答案和解析
显然f(n)≥n.k=1时,f(f(1))=3,所以1≤f(1)≤3
(1)f(1)=1,代入上式,得f(1)=3矛盾!
(2)f(1)=3,代入上式,得f(3)=3矛盾!
(3)f(1)=2,代入上式,得f(2)=3,然后令k=2,得f(3)=6,同理有f(6)=9,f(9)=18,
f(18)=27,f(27)=54,f(54)=81...
又f(x)严格递增,自变量x从27到54共28个整数值,其函数值54到81也共28个整数值.
故f(x)=x+27,x=27,28.53,54.
所以f(32)=32+27=59.,令k=32,得f(59)=96,再令k=59,得f(96)=177
故f(1)+f(9)+f(96)=2+18+177=197
(1)f(1)=1,代入上式,得f(1)=3矛盾!
(2)f(1)=3,代入上式,得f(3)=3矛盾!
(3)f(1)=2,代入上式,得f(2)=3,然后令k=2,得f(3)=6,同理有f(6)=9,f(9)=18,
f(18)=27,f(27)=54,f(54)=81...
又f(x)严格递增,自变量x从27到54共28个整数值,其函数值54到81也共28个整数值.
故f(x)=x+27,x=27,28.53,54.
所以f(32)=32+27=59.,令k=32,得f(59)=96,再令k=59,得f(96)=177
故f(1)+f(9)+f(96)=2+18+177=197
看了 f(k)定义在N+上,在N+...的网友还看了以下:
若函数f(n)=k,其中n∈N,k是π=3.1415926535…的小数点后第n位数字,例如f(2 2020-04-07 …
f(n)=1/(n+1)+1/(n+2)+1/(n+3)+……+1/(2n),(n∈N+),f(k 2020-04-27 …
(2010•沈阳一模)若f(n)表示n2-2n+2(n∈N+)的各位上的数字之和,例如142-2× 2020-05-02 …
用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+n(n+1) 2020-06-11 …
若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14 2020-07-18 …
对于正整数n,定义:其中f(n)表示n的首位数字与末位数字的平方和.例如:f(6)=62=36,f 2020-07-18 …
若函数f(x)满足对于x∈[n,m](m>n)有n/k≤f(x)≤km恒成立,则称函数f(x)在间 2020-07-26 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*), 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设函数f(n)=k(n∈N*),k是自然对数底e的小数点后第n位数字,其中e=2.71828182 2020-08-02 …