早教吧作业答案频道 -->数学-->
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)](1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
题目详情
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)]
(1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)
(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
(1)求证:f(1,n)-f(1,n-1)为常数(n是正整数)
(2)an=f(2-n),n是正整数,求证:an是等差数列,并求a1+a1+...+an
▼优质解答
答案和解析
(1)f(0,y)=y+1,f(x+1,y+1)=f[x,f(x+1,y)],
令x=0,y=n-1得
f(1,n)=f[0,f(1,n-1)]=f(1,n-1)+1,
∴f(1,n)-f(1,n-1)=1,为常数.
(2)f(1,0)=f(0,1)=2,
∴f(1,n)=1+n,
an=f(2,-n)=f[1,f(2,-n-1)]=1+f(2,-n-1),
f(2,0)=f(1,1)=2,
∴an=2-n,
∴{an}是等差数列,
∴a1+a2+...+an=n(a1+an)/2=n(1+2-n)/2=n(3-n)/2.
令x=0,y=n-1得
f(1,n)=f[0,f(1,n-1)]=f(1,n-1)+1,
∴f(1,n)-f(1,n-1)=1,为常数.
(2)f(1,0)=f(0,1)=2,
∴f(1,n)=1+n,
an=f(2,-n)=f[1,f(2,-n-1)]=1+f(2,-n-1),
f(2,0)=f(1,1)=2,
∴an=2-n,
∴{an}是等差数列,
∴a1+a2+...+an=n(a1+an)/2=n(1+2-n)/2=n(3-n)/2.
看了 数列题!f(x,y)对所有实...的网友还看了以下:
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
已知坐标满足方程F(x,y)=0的点都在曲线C上,那么()A.曲线C上的点的坐标都适合方程F(x, 2020-06-14 …
设f(x)是首项系数为1的整系数多项式,f(-1),f(0),f(1)都不能被3整除.证明:f(x 2020-06-25 …
已知坐标满足方程F(x,y)=0的点都在曲线C上,那么()A.曲线C上的点的坐标都适合方程F(x, 2020-07-08 …
已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+ 2020-07-15 …
对于定义域为R的函数f(x),若满足①f(0)=0;②当x∈R,且x≠0时,都有xf'(x)>0; 2020-07-26 …
已知f(x)满足对任意x,y∈R,都有f(x+y)=f(x)乘f(y),且f(x)≠0,当x>0, 2020-08-01 …
函数f(x)的定义域为D,若对于任意x1、x2∈D,当x1<x2时,都有f(x1)≤f(x2),则 2020-08-01 …
f(x)是一个整系数多项式,若f(0),f(1)都是奇数,求证f(x)不可能有整数根 2020-08-03 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …