早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义在正实数集上的函数f(x)满足下列条件:①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);

题目详情
定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(1)证明:∵x,y均为正数,且0<a<1,根据指数函数性质可知,总有实数m,n使得x=am,y=an
于是f(xy)=f(aman)=f(am+n)=(m+n)f(a)=m+n,…(2分)
又f(x)+f(y)=f(am)+f(an)=mf(a)+nf(a)=m+n,∴f(xy)=f(x)+f(y)(5分)
(2)证明:任设x1,x2∈R+,x1>x2,可令x1=x2t(t>1),t=aα(α<0)…(7分)
则由(1)知f(x1)-f(x2)=f(x2t)-f(x2)=f(x2)+f(t)-f(x2)=f(t)=f(aα)=αf(a)=α<0,
即f(x1)<f(x2).∴f(x)在正实数集上单调递减;
(3)令loga(4-x)=t,原不等式化为f(t2+2)-f(8t)≤3,其中t>0.∵f(x)-f(y)=f(x)+f(y-1)=f(
x
y
)且f(a)=1(0<a<1),
不等式可进一步化为f(
t2+2
8t
)≤f(a3),….(12分)
又由于单调递减,∴
t2+2
8t
≥a3对于t>0恒成立.…(13分)
t2+2
8t
1
8
((
t
2
t
)2+2
2
)≥
1
2
2

且当t=
2
(
t2+2
8t
)min=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号