早教吧作业答案频道 -->数学-->
已知四边形ABCD为菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段BC的中点时,请直接写出线段AE、EF、AF之间的数量关系;(2)如图2,
题目详情
已知四边形ABCD为菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.
(1)如图1,当点E是线段BC的中点时,请直接写出线段AE、EF、AF之间的数量关系;
(2)如图2,当点E是线段BC上的任意一点(点E不与点B、C重合)时,求证:BE=CF;
(3)如图3,当点E在线段CB上的延长线上,且∠EAB=15°时,求线段FD的长.
(1)如图1,当点E是线段BC的中点时,请直接写出线段AE、EF、AF之间的数量关系;
(2)如图2,当点E是线段BC上的任意一点(点E不与点B、C重合)时,求证:BE=CF;
(3)如图3,当点E在线段CB上的延长线上,且∠EAB=15°时,求线段FD的长.
▼优质解答
答案和解析
(1) 结论AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等),
∴△AEF是等边三角形,
∴AE=EF=AF.
(2)证明:连接AC,如图2中,∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF;
(3) 过点A作AG⊥BC于点G,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在Rt△AGB中,
∵∠ABC=60°,AB=4,
∴BG=
AB=2,AG=
BG=2
,
在Rt△AEG中,
∵∠AEG=∠EAG=45°,
∴AG=GE=2
,
∴EB=EG-BG=2
-2,
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2
-2,
∴DF=CF+CD=2
-2+4=2
+2.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等),
∴△AEF是等边三角形,
∴AE=EF=AF.
(2)证明:连接AC,如图2中,∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,
|
∴△BAE≌△CAF,
∴BE=CF;
(3) 过点A作AG⊥BC于点G,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在Rt△AGB中,
∵∠ABC=60°,AB=4,
∴BG=
1 |
2 |
3 |
3 |
在Rt△AEG中,
∵∠AEG=∠EAG=45°,
∴AG=GE=2
3 |
∴EB=EG-BG=2
3 |
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2
3 |
∴DF=CF+CD=2
3 |
3 |
看了 已知四边形ABCD为菱形,A...的网友还看了以下:
已知在平面直角坐标系xOy中,点A(2,0)、B是线段OA上一动点,已知在平面直角坐标系xOy中, 2020-04-25 …
若M(x1,y1),N(x2,y2),则线段MN的中点为(x1+x2/2,y1+y2/2),已知A 2020-05-13 …
一道初中题、、、50分、、急当x=2时,抛物线y=ax²+bx+c取得最小值-1,并且抛物线与y轴 2020-05-16 …
如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0),点D的坐 2020-06-14 …
已知椭圆E:的左焦点F1(,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线 2020-06-21 …
复变函数反三角函数由z=sinw=[(e^iw)-(e^-iw)]/(2i)得(e^iw)-2iz 2020-07-15 …
Matlab的问题,100分求答案在时间区间[0,.10]中,绘制y=1-e#-0.5t#cos2 2020-07-24 …
在直角坐标系中,已知A(4,0),B(0,2),C(0,-2),点E在线段AB(不含端点)上,点F在 2020-11-02 …
如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2 2020-12-25 …
高数题,已知自由落体的速度是v=gt,其中g是重力加速度,求在时间段[0,T]中物体下落的距离. 2021-01-22 …