早教吧作业答案频道 -->数学-->
设du(x,y)=(x+2y)dx+(2x+y)dy,求u(x,y)
题目详情
设du(x,y)=(x+2y)dx+(2x+y)dy,求u(x,y)
▼优质解答
答案和解析
分项组合
du(x,y)=(x+2y)dx+(2x+y)dy
=xdx+ydy+2(xdy+ydx)
=d(1/2×x^2)+d(1/2×y^2)+2d(xy)
=d(1/2×x^2+1/2×y^2+2xy)
所以,u(x,y)=1/2×x^2+1/2×y^2+2xy+C
du(x,y)=(x+2y)dx+(2x+y)dy
=xdx+ydy+2(xdy+ydx)
=d(1/2×x^2)+d(1/2×y^2)+2d(xy)
=d(1/2×x^2+1/2×y^2+2xy)
所以,u(x,y)=1/2×x^2+1/2×y^2+2xy+C
看了 设du(x,y)=(x+2y...的网友还看了以下:
高数微分非方程问题.dy/(2*dx)=2x-y 这个用u=y/x能做吗, 2020-05-16 …
隐函数的导数章,e的x次方+xy-e=0,方程两边对X求导,为什么左边等于e的x次方*dy/dx+ 2020-05-17 …
同济高数第六版P305页齐次方程通解的推导中(xy-y^2)dx-(x^2-2xy)dy=0 它可 2020-05-17 …
x/(y+z+u)=y/(z+u+x)=z/(u+y+x)=u(x+y+z)求(x+y)/(z+u 2020-05-21 …
一个关于多元函数求微分的问题f(lnx,y/x)=[x^2+x(lny-lnx)]/(y+xlnx 2020-06-05 …
大一高数的问题关于d/dx(.)感觉我一直没弄懂.(1).若令u=y/x,y=ux.则d大一高数的 2020-06-11 …
求解齐次方程过程中设u=y/x,则y=xu,然后我就不明白为什么为变成dy/dx=u+x*dy/d 2020-07-19 …
用matlab解Lorenz微分方程组的问题dx/dt=a(y-x)dy/dt=rx-y-xzdz 2020-07-24 …
y=ux求全微分需要讨论x正负么?用换元法求微分方程,就设了一个令u=y/x于是求dy,y=ux求 2020-08-01 …
微分方程y'=(y/x)^2+y/x的通解,答案是y(x+c)+x=0令u=y/x,y‘=u+xu' 2020-11-01 …