早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若0<y<x<π2,且tan2x=3tan(x-y),则x+y的可能取值是()A.π6B.π5C.π4D.π3

题目详情
若0<y<x<
π
2
,且tan2x=3tan(x-y),则x+y的可能取值是(  )

A.
π
6

B.
π
5

C.
π
4

D.
π
3
▼优质解答
答案和解析
∵tan2x=3tan(x-y),
∴tan[(x+y)+(x-y)]=3tan(x-y),
由两角和的正切公式可得
tan(x+y)+tan(x−y)
1−tan(x+y)tan(x−y)
=3tan(x-y),
变形可得tan(x+y)+tan(x-y)=3tan(x-y)-3tan2(x-y)tan(x+y),
即[1+3tan2(x-y)]tan(x+y)=2tan(x-y),
∴tan(x+y)=
2tan(x−y)
1+3tan2(x−y)
=
2
1
tan(x−y)
+3tan(x−y)

∵0<y<x<
π
2

∴0<x-y<
π
2

∴tan(x-y)>0,
∴由基本不等式可得tan(x+y)=
2
1
tan(x−y)
+3tan(x−y)
2
2
3
=
3
3

当且仅当tan(x-y)=
3
时取等号,
结合0<x+y<π可得x+y≤
π
6
,或
π
2
<x+y<π,
四个选项只有A符合,
故选:A