早教吧作业答案频道 -->数学-->
求(-x^2-2)/(x^2+x+1)^2dx的不定积分
题目详情
求(-x^2-2)/(x^2+x+1)^2dx的不定积分
▼优质解答
答案和解析
求不定积分∫[(-x²-2)/(x²+x+1)²]dx
原式=-∫[(x²+2)/(x²+x+1)²]dx
(x²+2)/(x²+x+1)=A/(x²+x+1)+(Bx+C)/(x²+x+1)²=[A(x²+x+1)+Bx+C]/(x²+x+1)²
故得x²+2=Ax²+(A+B)x+A+C;这是恒等式,对应项系数相等:
∴A=1;A+B=0;A+C=2;由此解得A=1,B=-1,C=1;
故原式=-{∫[1/(x²+x+1)]dx-∫(x-1)/(x²+x+1)²]dx}
=-∫dx/[(x+1/2)²+3/4]+∫xdx/(x²+x+1)²-∫dx/(x²+x+1)²
=-∫d(x+1/2)/[(x+1/2)²+3/4]+(1/2)∫d(x²+x+1)/(x²+x+1)²-(1/2)∫dx/(x²+x+1)²-∫dx/(x²+x+1)²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)∫d(x+1/2)/[(x+1/2)²+3/4]²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)(2/√3)arctan[2(x+1/2)/√3]+C
=-(4/√3)arctan[(2x+1)/√3]-1/[2(x²+x+1)]+C
原式=-∫[(x²+2)/(x²+x+1)²]dx
(x²+2)/(x²+x+1)=A/(x²+x+1)+(Bx+C)/(x²+x+1)²=[A(x²+x+1)+Bx+C]/(x²+x+1)²
故得x²+2=Ax²+(A+B)x+A+C;这是恒等式,对应项系数相等:
∴A=1;A+B=0;A+C=2;由此解得A=1,B=-1,C=1;
故原式=-{∫[1/(x²+x+1)]dx-∫(x-1)/(x²+x+1)²]dx}
=-∫dx/[(x+1/2)²+3/4]+∫xdx/(x²+x+1)²-∫dx/(x²+x+1)²
=-∫d(x+1/2)/[(x+1/2)²+3/4]+(1/2)∫d(x²+x+1)/(x²+x+1)²-(1/2)∫dx/(x²+x+1)²-∫dx/(x²+x+1)²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)∫d(x+1/2)/[(x+1/2)²+3/4]²
=-(2/√3)arctan[2(x+1/2)/√3]-1/[2(x²+x+1)]-(3/2)(2/√3)arctan[2(x+1/2)/√3]+C
=-(4/√3)arctan[(2x+1)/√3]-1/[2(x²+x+1)]+C
看了 求(-x^2-2)/(x^2...的网友还看了以下:
设f(x)=max{x^3,x^2,1},求f(x)的不定积分看了答案,f(x)应该是个分段函数, 2020-05-13 …
计算积分∫x*(x^2+1)^(!/2)dx=(1/2)∫(x^2+1)^(1/2)d(x^2+1 2020-05-13 …
已知复合函数f(e^x)=e^x+x求不定积分∫f(x)dx求不定积分∫√(x-1)^3/xdx第 2020-06-03 …
有关微积分的1.f(x)=根号下1+6x求2次微分2.水波纹的半径以每秒0.35m的速度增长,求半 2020-06-10 …
为什么对一些不定积分不能直接使用那对数公式如:∫1/(a^2-x^2)dx对这个函数的不定积分为什 2020-06-10 …
若(X+1)(X+6)的积不含X的一次项,则T的值为要说为什么若(X+1)(X+6)的积不含X的一 2020-08-01 …
为什么对一些不定积分不能直接使用那对数公式如:∫1/(a^2-x^2)dx对这个函数的不定积分为什 2020-08-01 …
求不定积分∫x^2+1/(x^2-1)(x+1)dx答案是1/2ln(x^2-1)+1/求不定积分∫ 2020-10-31 …
不定积分题1、若[f(x)dx=F(x)+c,则[xf(1-x^2)dx=()注:“[”是不定积分符 2020-11-10 …
(1)x乘以(2x+3)的4次开根号的不定积分怎么求(2)((2x-3)开2次根号减去1的分之1)的 2020-11-15 …