早教吧 育儿知识 作业答案 考试题库 百科 知识分享

提出问题:怎么运用矩形面积表示(y+2)(y+3)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图方式分割;(2)变形:2y+5=(y+2)+(y+3);(3)分析:图中大矩

题目详情
提出问题:怎么运用矩形面积表示(y+2)(y+3)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图方式分割;
(2)变形:2y+5=(y+2)+(y+3);
(3)分析:图中大矩形的面积可以表示为(y+2)(y+3);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2,由图形的部分与整体的关系可知:
(y+2)(y+3)>(y+2)+(y+3),即(y+2)(y+3)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
▼优质解答
答案和解析
(1)画长为2+m,宽为2+n的矩形,并按图方式分割.
(2)变形:a+b=(2+m)+(2+n)
(3)分析:图中大矩形面积可表示为(2+m)(2+n),阴影部分面积可表示为2+m与2+n的和.由图形的部分与整体的关系可知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b.