早教吧作业答案频道 -->数学-->
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,则此抛物线的解析式为.
题目详情
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,则此抛物线的解析式为______.
▼优质解答
答案和解析
∵抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,
∴a=±1,
∴抛物线解析式为y=±x2+bx+c,
∵抛物线顶点在直线x=1上,
∴a=±1,
∴当a=-1时,-
=1,
∴b=2;
当a=1时,-
=1,
∴b=-2,
∴抛物线解析式为y=-x2+2x+c=-(x-1)2+c+1,或y=x2-2x+c=(x-1)2+c-1,
∵抛物线顶点到x轴的距离为5.
∴当y=x2-2x+c=(x-1)2+c-1
∴|c-1|=5,解得c=-4或c=6,
∴此时抛物线的解析式为:y=x2-2x+6 或y=x2-2x-4;
∵当抛物线的解析式为y=-x2+2x+c=-(x-1)2+c+1时,
∴|c+1|=5,解得c=4或c=-6,
∴此时抛物线的解析式为:y=-x2+2x+4 或y=-x2+2x-6.
∴抛物线的解析式为:y=x2-2x+6或y=x2-2x-4或y=-x2+2x+4或y=-x2+2x-6.
∴a=±1,
∴抛物线解析式为y=±x2+bx+c,
∵抛物线顶点在直线x=1上,
∴a=±1,
∴当a=-1时,-
b |
2×(−1) |
∴b=2;
当a=1时,-
b |
2×1 |
∴b=-2,
∴抛物线解析式为y=-x2+2x+c=-(x-1)2+c+1,或y=x2-2x+c=(x-1)2+c-1,
∵抛物线顶点到x轴的距离为5.
∴当y=x2-2x+c=(x-1)2+c-1
∴|c-1|=5,解得c=-4或c=6,
∴此时抛物线的解析式为:y=x2-2x+6 或y=x2-2x-4;
∵当抛物线的解析式为y=-x2+2x+c=-(x-1)2+c+1时,
∴|c+1|=5,解得c=4或c=-6,
∴此时抛物线的解析式为:y=-x2+2x+4 或y=-x2+2x-6.
∴抛物线的解析式为:y=x2-2x+6或y=x2-2x-4或y=-x2+2x+4或y=-x2+2x-6.
看了 已知抛物线y=ax2+bx+...的网友还看了以下:
已知反比例函数y=kx与直线y=1/4x相交于A.B两点.第一象限上M(m,n)已知双曲线y=k/ 2020-05-13 …
二次函数和一次函数交点y=ax2与y=kx+1交于两点,一点坐标(1,4)另一点为? 2020-05-15 …
椭圆基础椭圆的上顶点是指y轴与椭圆的交点还是短半轴与x或y轴的正半轴交点?如果焦点在y轴上,那么左 2020-05-23 …
(2012•金东区一模)已知:如图,直线y=kx+b与x轴交于点A(8,0),与y轴交于点B(0, 2020-06-12 …
如图在平面直角坐标系中,抛物线y=1/2x^2-1/2x与直线y=1/2x+3/2交与点AB,直线 2020-07-21 …
已知,在平面直角坐标系中,A、B两点分别在x轴、y轴的正半轴上,且OB=OA=3,点P是与y轴平行 2020-07-29 …
二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=-1与y轴交于点 2020-07-29 …
如图,直线y=12x+2与y轴交于点A,与直线y=-12x交于点B,以AB为边向右作菱形ABCD, 2020-08-02 …
过点a(3,1)的直线与x轴的夹角为135度与y轴的正半轴交与点b直线ac交y轴与点c点c在点b方 2020-08-02 …
如图,已知直线y=2x+2与x轴交于点C,与y轴交于点B,抛物线y=ax2-2ax+c过点C且与直线 2020-11-01 …