早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.

题目详情
已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
▼优质解答
答案和解析
用反证法:
假设abcd没有一个负数
又因为a+b=1.c+d=1
所以abcd都大于等于0小于等于1
则a=1-b,c=1-d
ac+bd=(1-b)(1-d)+bd=1-b-d+2bd>1
b(d-1)+d(b-1)>0
因为0≤d≤1,0≤b≤1
所以-1≤d-1≤0,-1≤b-1≤0
而b≥0,d≥0
所以b(d-1)≤0,d(b-1)≤0
他们相加=0
所以只有b(d-1)=d(b-1)=0
若b=0,则由d(b-1)=0得到d=0
则由a+b=1.c+d=1
a=c=1
但这和ac+bd>1矛盾
所以a,b,c,d中至少有一个负数 答案补充 过程多了点,很高兴能帮你