早教吧作业答案频道 -->数学-->
已知s*n矩阵A的秩是r,证明存在s*r列满秩矩阵B和r*n行满秩矩阵C,使得A=BC.
题目详情
已知s*n矩阵A的秩是r,证明存在s*r列满秩矩阵B和r*n行满秩矩阵C,使得A=BC.
▼优质解答
答案和解析
这个叫做矩阵的满秩分解,《矩阵论》上的定理.
证明:
A是s×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵
1 0 0 ...0 0
0 1 0 ...0 0
0 0 1 ...0 0
...
0 0 0 ...0 0
就是左上角是一个r阶单位阵,其余部分都是0的m*n矩阵,记这个矩阵为T.
则A=PTQ,其中P是s*s的可逆阵,Q是n*n的可你阵.
现在将T分解,T=U*V=
1 0 0 *
0 1 0
0 0 1
...
0 0 0
1 0 0 ...0 0
0 1 0 ...0 0
0 0 1 ...0 0
U是s*r阶矩阵,其中上面是一个r阶单位阵
V是r*n阶矩阵,其中左边是一个r阶单位阵
这样正好T=U*V
所以A=PUVQ=(PU)*(VQ)=B*C
证明:
A是s×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵
1 0 0 ...0 0
0 1 0 ...0 0
0 0 1 ...0 0
...
0 0 0 ...0 0
就是左上角是一个r阶单位阵,其余部分都是0的m*n矩阵,记这个矩阵为T.
则A=PTQ,其中P是s*s的可逆阵,Q是n*n的可你阵.
现在将T分解,T=U*V=
1 0 0 *
0 1 0
0 0 1
...
0 0 0
1 0 0 ...0 0
0 1 0 ...0 0
0 0 1 ...0 0
U是s*r阶矩阵,其中上面是一个r阶单位阵
V是r*n阶矩阵,其中左边是一个r阶单位阵
这样正好T=U*V
所以A=PUVQ=(PU)*(VQ)=B*C
看了 已知s*n矩阵A的秩是r,证...的网友还看了以下:
设A是n阶矩阵,r(A)=r,证明:必存在n阶可逆矩阵B及秩为r的n阶矩阵C满足CC=C,使A=B 2020-05-14 …
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0 2020-05-15 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
已知s*n矩阵A的秩是r,证明存在s*r列满秩矩阵B和r*n行满秩矩阵C,使得A=BC. 2020-06-12 …
设A为数域P上秩为r的m*n矩阵,r>0,证明:存在秩为r的m*r矩阵F和秩为r的r*n矩阵G,使 2020-06-30 …
线性方程组Ax=b,有唯一解的充要条件是R(A)=R(A,b)=n,现在R(A)=n,则b怎样才能 2020-07-13 …
请教一个线性代数题设A,B分别是m×n矩阵和n×m矩阵.存在m×n矩阵C使得A=ABC,这一条件是 2020-07-26 …
设A=(α1,α2,…,αr)是n×r矩阵,B=(β1,β2,…,βs)是n×s矩阵,rank(A) 2020-11-01 …
设A是一次m*n矩阵,证明:R(A)=r的充分必要条件是存在秩为r的m*r矩阵B和秩为r的r*n阶矩 2020-11-11 …
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使得A=P( 2020-12-26 …