早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,四边形ABCD是矩形,P是BC边上的一点,连接PA、PD(1)求证:PA2+PC2=PB2+PD2(2)如图2,当点A在矩形ABCD的内部时,连接PA、PB、PC、PD.上面的结论是否还成立?说明理由.(3)当点A在矩

题目详情
如图1,四边形ABCD是矩形,P是BC边上的一点,连接PA、PD
(1)求证:PA2+PC2=PB2+PD2
(2)如图2,当点A在矩形ABCD的内部时,连接PA、PB、PC、PD.上面的结论是否还成立?说明理由.
(3)当点A在矩形ABCD的外部时,连接PA、PB、PC、PD.上面的结论是否还成立?(不必说明理由)
▼优质解答
答案和解析
(1)证明:在Rt△ABP中,由勾股定理,得PA2-PB2=AB2
同理可得PD2-PC2=CD2
由矩形的性质可得AB=CD,
∴PA2-PB2=PD2-PC2
∴PA2+PC2=PB2+PD2

(2)成立.
过点P作AD的垂线,交AD于点E,交BC于点F,
则四边形ABFE和CDEF为矩形,
∴AE=BF,DE=CF,
由勾股定理得:
则AP2=AE2+PE2,PC2=PF2+CF2
BP2=BF2+PF2,PD2=DE2+PE2
∴PA2+PC2=AE2+PE2+PF2+CF2
PB2+PD2=BF2+PF2+DE2+PE2
∴PA2+PC2=PB2+PD2

(3)成立.如图,由勾股定理可证PA2+PC2=PB2+PD2