早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC=°;(2)如

题目详情
已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.
作业搜
(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是___,∠EMC=___°;
(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.
①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;
②求∠EMC的度数.
▼优质解答
答案和解析
(1)如图1,
作业搜
∵∠BEF=90°,
∴∠DEF=90°,
∵点M是DF的中点,
∴ME=MD,
∵∠BCD=90°,点M是DF的中点,
∴MC=MD,
∴ME=MC;
∵ME=MD,
∴∠MDE=∠MED,
∴∠EMF=∠MDE+∠MED=2∠MDE,
∵MC=MD,
∴∠MDC=∠MCD,
∴∠CMF=∠MDC+∠MCD=2∠MDC,
∴∠EMC=∠EMF+∠CMF=2(∠MDE+∠MDC)=2∠BDC,
又∵∠DBC=30°,
∴∠BDC=90°-30°=60°,
∴∠EMC=2∠BDC=2×60°=120°.

(2)①ME=MC仍然成立.
证明:如图2,分别延长EM,CD交于点G,
作业搜
∵四边形ABCD是矩形,
∴∠DCB=90°.
∵∠BEF=90°,
∴∠FEB+∠DCB=180°.
∵点E在CB的延长线上,
∴FE∥DC.
∴∠1=∠G.
∵M是DF的中点,
∴FM=DM.
在△FEM和△DGM中,
∠1=∠G
∠2=∠3
FM=DM

∴△FEM≌△DGM,
∴ME=GM,
∴在Rt△GEC中,
MC=
1
2
EG=ME,
∴ME=MC. 
②如图3,分别延长FE,DB交于点H,
作业搜
∵∠4=∠5,∠4=∠6,
∴∠5=∠6.
∵点E在直线FH上,∠FEB=90°,
∴∠HEB=∠FEB=90°.
在△FEB和△HEB中,
∠FEB=∠HEB
EB=EB
∠5=∠6

∴△FEB≌△HEB.
∴FE=HE.
∵FM=MD,
∴EM∥HD,
∴∠7=∠4=30°,
∵ME=MC,
∴∠7=∠8=30°,
∴∠EMC=180°-∠7-∠8=180°-30°-30°=120°. 
故答案为:ME=MC,120.
看了 已知:在矩形ABCD和△BE...的网友还看了以下: