早教吧作业答案频道 -->数学-->
如图,D、A、E在一条直线上,△ADC≌△AEB,∠BAC=40°,∠D=45°求:(1)∠B的度数;(2)∠BMC的度数.
题目详情
如图,D、A、E在一条直线上,△ADC≌△AEB,∠BAC=40°,∠D=45°
求:(1)∠B的度数;
(2)∠BMC的度数.
求:(1)∠B的度数;
(2)∠BMC的度数.
▼优质解答
答案和解析
(1)∵△ADC≌△AEB,
∴∠BAE=∠CAD,
∵D、A、E在一条直线上,
∴∠BAD=
(180°-∠BAC)=
×(180°-40°)=70°,
∴∠CAD=∠BAD+∠BAC=70°+40°=110°,
在△ACD中,∠C=180°-∠CAD-∠D=180°-110°-45°=25°,
又∵△ADC≌△AEB,
∴∠B=∠C=25°;
(2)由三角形的外角性质,∠BMC=∠BAC+∠C,
=40°+25°,
=65°.
∴∠BAE=∠CAD,
∵D、A、E在一条直线上,
∴∠BAD=
1 |
2 |
1 |
2 |
∴∠CAD=∠BAD+∠BAC=70°+40°=110°,
在△ACD中,∠C=180°-∠CAD-∠D=180°-110°-45°=25°,
又∵△ADC≌△AEB,
∴∠B=∠C=25°;
(2)由三角形的外角性质,∠BMC=∠BAC+∠C,
=40°+25°,
=65°.
看了 如图,D、A、E在一条直线上...的网友还看了以下:
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
如何推导出a^3+b^3=(a+b)(a^2-ab+b^2).如何推导出a^3+b^3=(a+b) 2020-05-17 …
已知△ABC,内角A,B,C所对的边分别为a,b,c,且满足下列三个条件1.a^2+b^2=c^2 2020-05-23 …
证明方程x=asinx+b(a>0,b>0)至少有一个正根,并且不超过a+bf(x)在闭区间[0, 2020-07-20 …
一道向量的数学题已知|a|=根号2,|b|=3,a和b的夹角为45°,求当向量λa+b与a+λb的 2020-07-30 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
解关于X的方程(b+x)/a+2=(x-a)/b如果按方法(x-a)/b-(b+x)/a=2(ax- 2020-11-01 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …
在△ABC中,已知(a^2+b^2)sin(A-B)=(a^2-b^2)sinC,则△ABC是什么△ 2021-01-06 …
(题目中的字母都是向量,例如:a就是向量a)1.已知:|a|=2,|b|=1,(a-b)*b=0,则 2021-02-04 …