早教吧作业答案频道 -->其他-->
如图,四边形ABCD位于平面直角坐标系的第一象限,B、C在x轴上,A点函数y=2x上,且AB∥CD∥y轴,AD∥x轴,B(1,0)、C(3,0).(1)试判断四边形ABCD的形状;(2)若点P是线段BD上一点PE⊥B
题目详情
如图,四边形ABCD位于平面直角坐标系的第一象限,B、C在x轴上,A点函数y=
上,且AB∥CD∥y轴,AD∥x轴,B(1,0)、C(3,0).
(1)试判断四边形ABCD的形状;
(2)若点P是线段BD上一点PE⊥BC于E,M是PD的中点,连EM、AM.求证:AM=EM;
(3)在图(2)中,连接AE交BD于N,则下列两个结论:
①
值不变;
②
的值不变.其中有且仅有一个是正确的,请选择正确的结论证明并求其值.
2 |
x |
(1)试判断四边形ABCD的形状;
(2)若点P是线段BD上一点PE⊥BC于E,M是PD的中点,连EM、AM.求证:AM=EM;
(3)在图(2)中,连接AE交BD于N,则下列两个结论:
①
BN+DM |
MN |
②
BN2+DM2 |
MN2 |
▼优质解答
答案和解析
(1)∵AB∥CD∥y轴,AD∥x轴,
∴四边形ABCD为矩形,
当x=1时,y=AB=2,
∴AB=2,
∵BC=2,
∴AB=BC,
∴四边形ABCD是正方形.
(2)证明:延长EM交CD的延长线于G,连AE、AG,
∵PE∥GC∴∠PEM=∠DGM,
又∵∠PME=∠GMD,PM=DM,
∴△PME≌△DMG,
∴EM=MG,PE=GD,
∵PE=BE,
∴BE=GD,
在Rt△ABE与Rt△ADG中,
AB=AD,BE=GD,∠ABE=∠ADG=90°,
∴Rt△ABE≌Rt△ADG,
∴AE=AG,∠BAE=∠DAG,
∴∠GAE=90°,
∴AM=
EG=EM.
(3)
的值不变,值为1.理由如下:
在图2的AG上截取AH=AN,连DH、MH,
∵AB=AD,AN=AH,
由(2)知∠BAN=∠DAH,
∴△ABN≌△ADH,
∴BN=DH,∠ADH=∠ABN=45°,
∴∠HDM=90°,
∴HM2=HD2+MD2,
由(2)知∠NAM=∠HAM=45°,
又AN=AH,AM=AM,
∴△AMN≌△AMH,
∴MN=MH,
∴MN2=DM2+BN2,
即
=1.
(1)∵AB∥CD∥y轴,AD∥x轴,
∴四边形ABCD为矩形,
当x=1时,y=AB=2,
∴AB=2,
∵BC=2,
∴AB=BC,
∴四边形ABCD是正方形.
(2)证明:延长EM交CD的延长线于G,连AE、AG,
∵PE∥GC∴∠PEM=∠DGM,
又∵∠PME=∠GMD,PM=DM,
∴△PME≌△DMG,
∴EM=MG,PE=GD,
∵PE=BE,
∴BE=GD,
在Rt△ABE与Rt△ADG中,
AB=AD,BE=GD,∠ABE=∠ADG=90°,
∴Rt△ABE≌Rt△ADG,
∴AE=AG,∠BAE=∠DAG,
∴∠GAE=90°,
∴AM=
1 |
2 |
(3)
BN2+DM2 |
MN2 |
在图2的AG上截取AH=AN,连DH、MH,
∵AB=AD,AN=AH,
由(2)知∠BAN=∠DAH,
∴△ABN≌△ADH,
∴BN=DH,∠ADH=∠ABN=45°,
∴∠HDM=90°,
∴HM2=HD2+MD2,
由(2)知∠NAM=∠HAM=45°,
又AN=AH,AM=AM,
∴△AMN≌△AMH,
∴MN=MH,
∴MN2=DM2+BN2,
即
BN2+DM2 |
MN2 |
看了 如图,四边形ABCD位于平面...的网友还看了以下:
如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=40°,则∠2=()A.30°B.40°C. 2020-04-13 …
问一道高一数学题关于函数的向量a=(cosx-3,sinx)b=(cosx,sinx-3)f(x) 2020-04-27 …
已知函数f(x)=a㏑x+x2(a为实常数)(1)若a=-2,求证:函数f(x)在(1,+∽)上是 2020-05-13 …
已知函数f(x)=X?+a÷x(x≠0,常数a∈R)若函数f(x)在X∈2,正无穷)上为增函数,求 2020-05-13 …
解关于x的不等式x的平方-x-a(a-1)>0,用高一上知识x^2-x-a(a-1)>0x^2+[ 2020-05-23 …
函数与极值f(x)=x³/3-ax²+(a²-1)x,若f(x)=0有三个不等式实数根,求a的取值 2020-06-08 …
高等代数多项式f(x)=(x-a)f1(x),若a为整数,f(x)为整系数多项式,则由综合法知商式 2020-06-10 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
已知函数f(x)=x³-ax²-3x,(1)若f(x)在区间[1,正无穷)上是增函数,求a已知函数 2020-07-18 …
函数y=2|x-3|在a,a+1上为单调函数,则a的取值范围若奇函数f(x)与偶函数g(x)之和为 2020-08-02 …