早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2006•闸北区一模)如图,在四边形ABCD中,BD垂直平分AC,垂足为点O,∠ABD=60°,AB边长为24厘米,cot∠ADB=33.质点P以4厘米/秒的速度,从点A出发沿线路A→B→D作匀速运动,质点Q以5厘米/秒

题目详情
(2006•闸北区一模)如图,在四边形ABCD中,BD垂直平分AC,垂足为点O,∠ABD=60°,AB边长为24厘米,cot∠ADB=
3
3
.质点P以4厘米/秒的速度,从点A出发沿线路A→B→D作匀速运动,质点Q以5厘米/秒的速度,从点D同时出发,沿线路D→C→B→A作匀速运动.
(1)求BD和CD的长,并确定四边形ABCD的形状;
(2)求经过多少秒钟,运动中的质点P、Q构成的线段与四边形ABCD的边平行?(不包括起始位置和两点均终止的情况)
(3)如果已知质点P、Q经过12秒后分别到达M、N两点,然后同时沿原路返回,质点P的速度不变,质点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,求a的值.
▼优质解答
答案和解析
(1)∵cot∠ADB=
3
3

∴∠ADB=60°
∵∠ABD=60°
∴△ABD是等边三角形
∴AB=AD=BD=24(厘米)
∵BD垂直平分AC,垂足为点O
∴AB=AD=CB=CD=24(厘米),
∴四边形ABCD为菱形.

(2)∵P、Q运动的速度分别为4厘米/秒、5厘米/秒
∴①当点Q在CD上时
∵DQ>AP
∴PQ不可能与四边形ABCD的边平行
②当点Q在CB上时 质点P运动到点B
∴t=
24
4
=6秒,PQ∥AD
质点P运动到BD上 BQ=48-5t1,BP=4t1-24
∵PQ∥AB
∴BP=BQ,48-5t1=4t1-24,
∴t1=8秒
③当点Q在AB上时BQ=5t2-48,BP=4t2-24 质点P运动到BD上
∵PQ∥AD
∴BP=BQ,4t2-24=5t2-48,
∴t2=24秒 (4t2=96>AB+BD 不成立) 
∴当时间为6秒和8秒时,线段PQ与四边形ABCD的边平行.

(3)质点P、Q经过12秒后分别到达M、N两点,其路程为4×12=48(厘米),5×12=60(厘米)
∵AB+BD=48(厘米),
∴点M与点D重合
∵CD+CB+
1
2
AB=60(厘米)
∴点N是AB的中点.
∵△ABD是等边三角形
∴△AMN是直角三角形
又∵点P从M点返回3秒走过的路程4×3=12(厘米)
∴点E与点O重合点Q,从N点返回3秒走过的路程为3a,
若△BEF与△AMN相似,则
①点Q在BN中点F1处3a1=6,a1=2;
②点Q在BC四分之一点F2处(如图) 3a2=18,a2=6; 
③点Q在点C处3a3=12+24,a3=12.
∴当a为2、6和12时,△BEF与△AMN相似.