早教吧作业答案频道 -->数学-->
求下列线性偏微分方程的通解(其中u=u(x,y)):(1)uxx+cu=0(分C>0,=0,<0);(2)uyy+uy=0.uxx是u关于x的二阶偏导,uyy同理,uy是一阶偏导
题目详情
求下列线性偏微分方程的通解(其中u = u(x,y)):
(1) uxx + cu = 0 (分C > 0,= 0,< 0);
(2) uyy + uy = 0.
uxx是u关于x的二阶偏导,uyy同理,uy是一阶偏导
(1) uxx + cu = 0 (分C > 0,= 0,< 0);
(2) uyy + uy = 0.
uxx是u关于x的二阶偏导,uyy同理,uy是一阶偏导
▼优质解答
答案和解析
1
u'x x+cu=0
xdu/dx+cu=0
du/u=-cdx/x
ln|u|=-cln|x|+lnC1 C1=f(y)+C01
u=C1*x^(-c)
通解u=(f(y)+C01)*x^(-c)
2
u''y+u'y=0
du'y/dy=-u'y
ln|u'y|=-y+lnC0 C0=f(x)+C02
u'y=C0e^(-y)
du/dy=C0e^(-y)
du=C0e^(-y)dy
u=C1-C0e^(-y) C1=g(x)+C03
通解
u=g(x)+C03-(f(x)+C02)e^(-y)
u'x x+cu=0
xdu/dx+cu=0
du/u=-cdx/x
ln|u|=-cln|x|+lnC1 C1=f(y)+C01
u=C1*x^(-c)
通解u=(f(y)+C01)*x^(-c)
2
u''y+u'y=0
du'y/dy=-u'y
ln|u'y|=-y+lnC0 C0=f(x)+C02
u'y=C0e^(-y)
du/dy=C0e^(-y)
du=C0e^(-y)dy
u=C1-C0e^(-y) C1=g(x)+C03
通解
u=g(x)+C03-(f(x)+C02)e^(-y)
看了 求下列线性偏微分方程的通解(...的网友还看了以下:
记有序的有理数对x,y为(x,y),若xy小于0,且同时满足|x|y+x=0 与|x|+|y|=3 2020-05-17 …
一道美国微积分课本上的题题目是这样的:“使f(x)=0(x为有理数)1(x为无理数),g(x)=0 2020-06-10 …
中值定理的问题函数f(x)=x-(3/2)x^(1/3)在下列区间上不满足拉格朗日中值定理的条件是 2020-07-09 …
f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0)设f(x)=[g(x)-e^(- 2020-07-26 …
怎么证明x-x=0,0与x无关减法的定义如果x+y=z,那么定义y=z-x其中x,z确定后y唯一存 2020-07-30 …
实数的绝对值的意义为:|x|=x,当x>0时,|x|=0,当x=0时,|x|=-x,当x<0时.最后 2020-10-30 …
已知x>0,y0,且|x||z|,化简|x+z|+|y+z|-|x+y|请列出清楚的算式和布奏和理由 2020-11-01 …
洛必达法则∞比∞型的定理与0比0型的定理的差别是不是只是前者是“x->0或x->∞时,f(x)->∞ 2020-11-07 …
已知x,y为有理数,且x≠0,y≠0,求|x|/x+|y|/y的值.①已知x,y,z为有理数,且x≠ 2020-12-31 …
f(x)=xe^-!,在x=0处可导么?f(x)=!在x=0处可导么?理由是什么?表示x的绝对值.f 2021-01-12 …