早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,A(0,2)、B(2,0)、C(-2,0).(1)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H.证明:PA=PH.(2)在(1)的条件下,若在点A处有一个等腰
题目详情
如图,在平面直角坐标系中,A(0,2)、B(2,0)、C(-2,0).
(1)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H.证明:PA=PH.
(2)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论.
(1)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H.证明:PA=PH.
(2)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论.
▼优质解答
答案和解析
(1)∵A(0,2)、B(2,0)、C(-2,0).
∴OA=OB=OC,
∴△ABC,△OAC,△OAB都是等腰直角三角形,
∴∠6=∠7=45°,
如图1,过点P作PG∥AB交y轴与G,则∠4=∠6=45°,
∴OP=OG,
∴AO+OG=OB+OP,
即AG=PB,
∵AP⊥PH,
∴∠2+∠5=90°,
∵∠1+∠5=90°,
∴∠1=∠2,
∵MN⊥AB,
∴∠3+∠7=90°,
∴∠3=45°,
∴∠3=∠4,
在△APG和△PHB中,
,
∴△APG≌△PHB,
∴PA=PH.
(2)OG=PG,OG⊥PG,
理由:如图2,延长PG到R,使GR=PG,连接PO,OR,BR,
在△PQG和△BRG中,
,
∴△PQG≌△BRG,
∴PQ=BR,∠5=∠GBR,
∴PQ∥BR,
∵AP⊥PQ,
延长AP交BR于S,交OB于T,则AP⊥BR,
∵∠AOB=∠ASB=90°,∠ATR=∠BTS,
∴∠α=∠β,
∵PA=PQ,PQ=BR,
∴PA=BR,
在△PAO和△RBO中,
∴△PAO≌△RBO,
∴PO=OR,∠1=∠2,
∵∠1+∠POB=90°,
∴∠POB+∠2=90°,
∴△POR为等腰直角三角形,
∵PG=GR,
∴OG⊥PG,OG=PG.
∴OA=OB=OC,
∴△ABC,△OAC,△OAB都是等腰直角三角形,
∴∠6=∠7=45°,
如图1,过点P作PG∥AB交y轴与G,则∠4=∠6=45°,
∴OP=OG,
∴AO+OG=OB+OP,
即AG=PB,
∵AP⊥PH,
∴∠2+∠5=90°,
∵∠1+∠5=90°,
∴∠1=∠2,
∵MN⊥AB,
∴∠3+∠7=90°,
∴∠3=45°,
∴∠3=∠4,
在△APG和△PHB中,
|
∴△APG≌△PHB,
∴PA=PH.
(2)OG=PG,OG⊥PG,
理由:如图2,延长PG到R,使GR=PG,连接PO,OR,BR,
在△PQG和△BRG中,
|
∴△PQG≌△BRG,
∴PQ=BR,∠5=∠GBR,
∴PQ∥BR,
∵AP⊥PQ,
延长AP交BR于S,交OB于T,则AP⊥BR,
∵∠AOB=∠ASB=90°,∠ATR=∠BTS,
∴∠α=∠β,
∵PA=PQ,PQ=BR,
∴PA=BR,
在△PAO和△RBO中,
|
∴△PAO≌△RBO,
∴PO=OR,∠1=∠2,
∵∠1+∠POB=90°,
∴∠POB+∠2=90°,
∴△POR为等腰直角三角形,
∵PG=GR,
∴OG⊥PG,OG=PG.
看了 如图,在平面直角坐标系中,A...的网友还看了以下:
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=x分之k的图像上.(1)会的(2) 2020-04-08 …
如果线段AB=13㎝MA+MB=17㎝下列说法正确的是()A.M点在线段AB上B.M点在如果线段A 2020-04-27 …
如图所示,水平面上停放着A,B两辆小车,质量分别为M和m,M>m,两小车相距为L,人的质量也为m, 2020-05-12 …
如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段 2020-05-22 …
EXCEL中,如何利用函数表达下例子?如在B列中,若A列表包含A、B、C,则返回6,若A列包D、E 2020-06-05 …
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=k/x的图像上如果M为x轴上一点, 2020-06-29 …
如图是“二分法”解方程的流程图.在①~④处应填写的内容分别是()A.f(a)f(m)<0;a=m; 2020-07-09 …
张强同学设计了如下问题:定义:把形如a+b√m,a-b√m(a,b为有理数且b≠0,m为正整数且开 2020-07-30 …
如图所示,在竖直平面内有半径为R="0.2"m的光滑1/4圆弧AB,圆弧B处的切线水平,O点在B点 2020-07-31 …
如图,直角坐标系中,A(0,4),B(4,0),点M、N分别在y轴和x轴上,N点在B点右侧,且AM 2020-08-03 …