早教吧作业答案频道 -->其他-->
如图,已知点A(-m,n),B(0,m),且m、n满足m+5+(n-5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∠AED,若∠ACF-∠AEF=20°
题目详情
如图,已知点A(-m,n),B(0,m),且m、n满足
+(n-5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.
(1)写出D点坐标并求A、D两点间的距离;
(2)若EF平分∠AED,若∠ACF-∠AEF=20°,求∠EFB的度数;
(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.
m+5 |
(1)写出D点坐标并求A、D两点间的距离;
(2)若EF平分∠AED,若∠ACF-∠AEF=20°,求∠EFB的度数;
(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.
▼优质解答
答案和解析
(1)∵
+(n-5)2=0,
∴m+5=0,n-5=0,
∴m=-5,n=5,
∴A点坐标为(5,5),
∵△ABC沿y轴折叠,使点A落在点D处,
∴点D与点A关于y轴对称,
∴D点坐标为(-5,5);
∴AD=5-(-5)=10;
(2)如图2,∵△ABC沿x轴折叠,使点A落在点D处,
∴∠DCF=∠ACF,
∵∠DCF=∠EFB+∠DEF,
∴∠EFB=∠ACF-∠DEF,
∵EF平分∠AED,
∴∠DEF=∠AEF,
∴∠EFB=∠ACF-∠AEF=20°;
(3)∠CPH=45°.理由如下:
如图3,∵QH∥AB,
∴∠QCP=∠1,∠ARX=∠3,
∵CP、RP分别平分∠BCQ和∠ARX,
∴∠QCP=
∠BCQ,∠2=
∠ARX,
∴∠1=
∠BCQ,∠2=
∠3,
∵∠BCQ=90°+∠3,
∴2∠1=90°+2∠2,即∠1=45°+∠2,
∵∠1=∠CPR+∠2,
∴∠CPR=45°.
m+5 |
∴m+5=0,n-5=0,
∴m=-5,n=5,
∴A点坐标为(5,5),
∵△ABC沿y轴折叠,使点A落在点D处,
∴点D与点A关于y轴对称,
∴D点坐标为(-5,5);
∴AD=5-(-5)=10;
(2)如图2,∵△ABC沿x轴折叠,使点A落在点D处,
∴∠DCF=∠ACF,
∵∠DCF=∠EFB+∠DEF,
∴∠EFB=∠ACF-∠DEF,
∵EF平分∠AED,
∴∠DEF=∠AEF,
∴∠EFB=∠ACF-∠AEF=20°;
(3)∠CPH=45°.理由如下:
如图3,∵QH∥AB,
∴∠QCP=∠1,∠ARX=∠3,
∵CP、RP分别平分∠BCQ和∠ARX,
∴∠QCP=
1 |
2 |
1 |
2 |
∴∠1=
1 |
2 |
1 |
2 |
∵∠BCQ=90°+∠3,
∴2∠1=90°+2∠2,即∠1=45°+∠2,
∵∠1=∠CPR+∠2,
∴∠CPR=45°.
看了 如图,已知点A(-m,n),...的网友还看了以下:
若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2 2020-05-14 …
阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c 2020-07-09 …
已知抛物线C:y=(x+1)^2与圆M:(x-1)^2+(y-1/2)^2=r^2有一个公共点A, 2020-07-20 …
若式子nm有意义,则m、n应满足()A.m≥0且n≥0B.m、n同号C.m≥0且n>0D.m•n≥ 2020-07-30 …
已知m是平面α的一条斜线,点A是平面α外的任意点,是经过点A的一条动直线,那么下列情形中可能出现的 2020-07-30 …
i几道关于高中的数学题1.若A={a,0,1},B={c+b,1/b+a,1},且A=B,则a=, 2020-08-01 …
(2008•常德)阅读理解析若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则 2020-08-02 …
已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线m是以点M为中点的弦所在的直线,直线l 2020-11-02 …
已知m是平面α的一条斜线,点A?α,为l过点A的一条动直线,那么下列情形可能出现的是()A、l⊥m且 2020-12-05 …
已知抛物线C:y=(x+1)2与圆M:(x−1)2+(y−12)2=r2(r>0)有一个公共点A,且 2021-01-11 …