早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A、B、C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的

题目详情
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
▼优质解答
答案和解析
(1)(法一)设抛物线的解析式为y=ax2+bx+c(a≠0),
把A(﹣1,0),B(5,0),C(0,2)
三点代入解析式得:
解得

(法二)设抛物线的解析式为y=a(x﹣5)(x+1),
把(0,2)代入解析式得:2=﹣5a,



(2)①过点F作FD⊥x轴于D,
当点P在原点左侧时,BP=6﹣t,OP=1﹣t;
在Rt△POC中,∠PCO+∠CPO=90°,
∴∠FPD+∠CPO=90°,
∵∠PCO=∠FPD;
∴∠POC=∠FDP,
∴△CPO∽△PFD,

∴PF=PE=2PC,
∴FD=2PO=2(1﹣t);
∴S △PBF = =t 2 ﹣7t+6(0≤t<1);
当点P在原点右侧时,OP=t﹣1,BP=6﹣t;
∵△CPO∽△PFD,
∴FD=2(t﹣1);∴S △PBF = =﹣t 2 +7t﹣6(1<t<6);
②当0≤t<1时,S=t 2 ﹣7t+6;
此时t在t=3.5的左侧,S随t的增大而减小,
则有:当t=0时,S max =0﹣7×0+6=6;
当1<t<6时,S=﹣t 2 +7t﹣6;
由于1<3.5<6,故当t=3.5时,S max =﹣3.5×3.5+7×3.5+6=6.25;
综上所述,当t=3.5时,面积最大,且最大值为6.25.
(3)能;①若F为直角顶点,过F作FD⊥x轴于D,
由(2)可知BP=6﹣t,DP=2OC=4,
在Rt△OCP中,OP=t﹣1,
由勾股定理易求得CP 2 =t 2 ﹣2t+5,
那么PF 2 =(2CP) 2 =4(t 2 ﹣2t+5);
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF 2 ÷PD=t 2 ﹣2t+5,
而PB的另一个表达式为:PB=6﹣t,
联立两式可得t 2 ﹣2t+5=6﹣t,
即t= ,P点坐标为( ,0),
则F点坐标为:(5, );
②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,
那么BP=2OC=4,即OP=OB﹣BP=1,此时t=2,P点坐标为(1,0).FD=2(t﹣1)=2,
则F点坐标为(5,2).