早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴相交于点D、M(点D在点M的下方).(1)求以直线x=3为对称轴,且经过D、C两点的抛

题目详情
在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴相交于点D、M(点D在点M的下方).
(1)求以直线x=3为对称轴,且经过D、C两点的抛物线的解析式;
(2)若E为直线x=3上的任一点,则在抛物线上是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)如图,∵圆以点A(3,0)为圆心,5为半径,
∴根据圆的对称性可知 B(-2,0),C(8,0).
连接AD.
在Rt△AOD中,∠AOD=90°,OA=3,AD=5,
∴OD=4.
∴点D的坐标为(0,-4).
设抛物线的解析式为y=ax2+bx-4,
又∵抛物线经过点C(8,0),且对称轴为x=3,
b
2a
=3
64a+8b−4=0.

解得  
a=
1
4
b=−
3
2
.

∴所求的抛物线的解析式为 y=
1
4
x2−
3
2
x−4.

(2)存在符合条件的点F,使得以点B、C、E、F为顶点的四边形是平行四边形.
分两种情况.
Ⅰ:当BC为平行四边形的一边时,
必有 EF∥BC,且EF=BC=10.
∴由抛物线的对称性可知,
存在平行四边形BCEF1和平行四边形CBEF2.如(图1).
∵E点在抛物线的对称轴上,∴设点E为(3,e),且e>0.
则F1(-7,t),F2(13,t).
将点F1、F2分别代入抛物线的解析式,解得 t=
75
4

∴F点的坐标为F1(−7,
75
4
)或F2(13,
75
4
).
Ⅱ:当BC为平行四边形的对角线时,
必有AE=AF,如(图2).
∵点F在抛物线上,∴点F必为抛物线的顶点.
y=
1
4
x2−
3
2
x−4=
1
4
(x−3)2−
25
4

知抛物线的顶点坐标是(3,
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号