早教吧作业答案频道 -->数学-->
抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数
题目详情
抛物线 的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B. (1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值; (2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB; (3)若射线NM交x轴于点P,且PA×PB= ,求点M的坐标. |
|
▼优质解答
答案和解析
抛物线 的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B. (1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值; (2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB; (3)若射线NM交x轴于点P,且PA×PB= ,求点M的坐标. |
|
(1)y= x 2 +x+m= (x+2) 2 +(m﹣1) ∴顶点坐标为(﹣2,m﹣1) ∵顶点在直线y=x+3上, ∴﹣2+3=m﹣1,得m=2; (2)∵点N在抛物线上, ∴点N的纵坐标为: a 2 +a+2,即点N(a, a 2 +a+2)过点F作FC⊥NB于点C, 在Rt△FCN中,FC=a+2,NC=NB﹣CB= a 2 +a, ∴NF 2 =NC 2 +FC 2 =( a 2 +a) 2 +(a+2) 2 ,=( a 2 +a) 2 +(a 2 +4a)+4, 而NB 2 =( a 2 +a+2) 2 ,=( a 2 +a) 2 +(a 2 +4a)+4 ∴NF 2 =NB 2 ,NF=NB; (3)M(﹣3, ). |
看了 抛物线的顶点在直线y=x+3...的网友还看了以下:
平面直角坐标系中,直线y=-x+5交x轴、y轴于点a,b,c(2,m)是直线ab上一点,过点c的直 2020-05-15 …
平面直角坐标系中,直线y=x+3x轴于A,交y轴于B,在x轴正半轴取一点C,使△ABC的面积为6. 2020-05-16 …
直线AB:y=-x-b分别与x、y轴交于A (6,0)、B两点,过点B的直线交x轴负半轴于C,且O 2020-05-17 …
直线AB:Y=-X-B分别与X.Y轴交于A(6,0),B两点,过点B的直线交X轴负半轴于C,且OB 2020-05-17 …
如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半 2020-06-14 …
如图:直线y=-x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且 2020-07-20 …
直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB 2020-08-01 …
直线y=-四分之三x+6与x轴、y轴分别交于AB两点,直线y=五分之四x与AB交于C与过A平行于y轴 2020-12-13 …
如图所示,直线y=-4/3x+4与y轴和x轴分别交于点A,点D,与直线y...如图所示,直线y=-4 2021-01-10 …
已知如图,直线AB:y=-x+8与x轴,y轴分别交与点B,A,过点B作直线AB的垂线交y轴与点D已知 2021-01-11 …